Among the proposed predictors for immune tolerance induction (ITI) outcome, the therapeutic regimen - specifically the dose and frequency of administered factor VIII (FVIII) as well as FVIII product type - is intensely debated. Are there any advantages for low-dose regimens (50 IU FVIII kg(-1) three times a week) over high-dose regimens (200 IU FVIII kg day(-1)) or vice versa? Are von Willebrand factor (VWF)-containing plasma-derived concentrates superior to recombinant FVIII concentrates for tolerance induction? A review of the available literature indicates that patients with good prognostic factors can achieve success with either low-dose or high-dose ITI regimens. Retrospective data suggest that patient characteristics such as maximum historical inhibitor titres and pre-ITI inhibitor titres are better predictors of treatment success than dose. Results of the prospective International ITI Study have recently become available. In inhibitor patients with good prognosis, success rates were similar between low-dose (50 IU FVIII kg(-1) three times a week) and high-dose (200 IU FVIII kg(-1) daily) regimens. However, patients receiving low-dose ITI took longer to achieve various ITI milestones and had a significantly higher bleed rate per month compared with the high-dose group (0.62 vs. 0.28; P = 0.00024), findings with important clinical implications. Inhibitor patients with poor prognostic features should be treated with a high-dose protocol. This conclusion is supported by a meta-analysis of the International Immune Tolerance Registry and North American Immune Tolerance Registry and by data from Germany showing good success rates with the high-dose, high-frequency Bonn protocol in poor prognosis patients. Type of concentrate also appears to have an influence on ITI success rates in this patient subgroup, with evidence suggesting an advantage for VWF-containing plasma-derived FVIII concentrates over recombinant or VWF-free concentrates. The ongoing prospective studies REScue Immunotolerance STudy and Observational Immune Tolerance Induction are evaluating ITI outcome with respect to product type and are expected to answer this important clinical question as well as provide greater insight into patient- and therapy-related variables in inhibitor patients with poor prognostic features.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/hae.12051 | DOI Listing |
Nat Commun
January 2025
Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, CA, 94143, USA.
The Nr4a nuclear hormone receptors are transcriptionally upregulated in response to antigen recognition by the T cell receptor (TCR) in the thymus and are implicated in clonal deletion, but the mechanisms by which they operate are not clear. Moreover, their role in central tolerance is obscured by redundancy among the Nr4a family members and by their reported functions in Treg generation and maintenance. Here we take advantage of competitive bone marrow chimeras and the OT-II/RIPmOVA model to show that Nr4a1 and Nr4a3 are essential for the upregulation of Bcl2l11/BIM and thymic clonal deletion by self-antigen.
View Article and Find Full Text PDFMethods Cell Biol
January 2025
Department of Microbiology, Biochemistry and Molecular Genetics, (3)Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ, United States. Electronic address:
The externalization of Phosphatidylserine (PS) from the inner surface of the plasma membrane to the outer surface of the plasma membrane is an emblematic event during apoptosis and serves as a potent "eat-me" signal for the efferocytosis of apoptotic cells. Although less well understood, PS is also externalized on live cells in the tumor microenvironment and on live virus-infected cells whereby it serves as an immune modulatory signal that drives tolerance and immune escape. Given the importance of PS in cancer immunology and immune escape, PS-targeting monoclonal antibodies have been characterized with promising immunotherapeutic potential.
View Article and Find Full Text PDFMucosal Immunol
January 2025
Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States. Electronic address:
Immunoglobulin A (IgA), the most abundantly produced antibody at mucosal surfaces, is thought to play key roles in immune responses to respiratory and enteric pathogens and in the regulation of commensal colonization. Low IgA levels have been associated with recurrent infections and immune dysregulation, including inflammatory bowel disease and autoimmunity. Levels of IgA in maternal breast milk and infant stool are both inversely associated with the emergence of immune responses to food antigens in infants and, in naturally resolving food sensitivity and immunotherapy protocols, the induction of IgA antibodies to dietary antigens has been associated with the acquisition of food tolerance.
View Article and Find Full Text PDFTransl Pediatr
December 2024
Department of Hematology Center, National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
Background: The production of inhibitors is a serious complication that can arise during coagulation factor replacement therapy for hemophilia A (HA). The primary therapeutic strategy to eliminate inhibitors is immune tolerance induction (ITI), which is known to be an extremely challenging, prolonged, and costly treatment. With the widespread use of RNA sequencing (RNA-seq) to analyze differentially expressed genes (DEGs) across various treatment outcomes, there is potential for predicting ITI outcomes.
View Article and Find Full Text PDFSemin Immunopathol
January 2025
Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
The management of autoimmune diseases is currently limited by therapies that largely suppress the immune system, often resulting in partial and temporary remissions. Cellular immunotherapies offer a targeted approach by redirecting immune cells to correct the underlying autoimmunity. This review explores the latest advances in cellular immunotherapies for autoimmune diseases, focusing on various strategies, such as the use of chimeric antigen receptor (CAR) T cells, chimeric auto-antibody receptor (CAAR) T cells, regulatory T cells (Tregs), and tolerogenic dendritic cells (TolDCs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!