Cell-penetrating peptides such as TAT or R9 labeled with small organic fluorophores can lyse endosomes upon light irradiation. The photoendosomolytic activity of these compounds can in turn be used to deliver proteins and nucleic acids to the cytosol of live cells with spatial and temporal control. In this report, we examine the mechanisms by which such fluorescent peptides exert a photolytic activity using red blood cells as a membrane model. We show that the peptides TAT and R9 labeled with tetramethylrhodamine photolyze red blood cells by promoting the formation of singlet oxygen in the vicinity of the cells' membranes. In addition, unlabeled TAT and R9 accelerate the photolytic activity of the membrane-bound photosensitizer Rose bengal in trans, suggesting that the cell-penetrating peptides participate in the destabilization of photo-oxidized membranes. Peptides and singlet oxygen generators therefore act in synergy to destroy membranes upon irradiation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3622158PMC
http://dx.doi.org/10.1111/php.12036DOI Listing

Publication Analysis

Top Keywords

cell-penetrating peptides
12
singlet oxygen
12
peptides singlet
8
oxygen generators
8
peptides tat
8
tat labeled
8
photolytic activity
8
red blood
8
blood cells
8
peptides
6

Similar Publications

Advances and prospects of cell-penetrating peptides in tumor immunotherapy.

Sci Rep

January 2025

The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.

Cell-penetrating peptides (CPPs) have been shown to have superior material transport ability because poor infiltration of activated lymphocytes into tumors is one of the crucial factors limiting the therapeutic effect of tumor immunotherapy. Numerous studies have investigated the potential application of CPPs in tumor immunotherapy. This review delves into the crucial role that CPPs play in enhancing tumor immunotherapy, emphasizing their impact on various immunotherapy strategies, such as cytokine therapy, adoptive cell therapy, cancer vaccines, and immune checkpoint inhibitors.

View Article and Find Full Text PDF

Peptides play critical roles in cellular functions such as signaling and immune regulation, and peptide-based biotherapeutics show great promise for treating various diseases. Among these, cell-penetrating peptides (CPPs) are particularly valuable for drug delivery due to their ability to cross cell membranes. However, the mechanisms underlying CPP-mediated transport, especially across the blood-brain barrier (BBB), remain poorly understood.

View Article and Find Full Text PDF

The cellular uptake routes of peptides and proteins are complex and diverse, often handicapping therapeutic success. Understanding their mechanisms of internalization requires chemical derivatization with approaches that are compatible with wash-free and real-time imaging. In this work, we developed a new late-stage labeling strategy for unprotected peptides and proteins, which retains their biological activity while enabling live-cell imaging of uptake and intracellular trafficking.

View Article and Find Full Text PDF

In recent years, the use of cationic peptides as alternative drugs with anticancer activity has received attention. In this study, the targeted release of curcumin (Cur) and CM11 peptide alone and together against hepatocellular carcinoma (HCC) was evaluated using chitosan nanoparticles (CS NPs) coated with Pres1 that target the SB3 antigen of HCC cells (PreS1-Cur-CM11-CS NPs). SB3 protein is the specific antigen of HCC and the PreS1 peptide is a part of the hepatitis B antigen, which can specifically bind to the SB3 protein.

View Article and Find Full Text PDF

Leishmaniasis is a neglected tropical disease caused by a protozoan of the genus Leishmania, which has visceral and cutaneous forms. The symptoms of leishmaniasis include high fever and weakness, and the cutaneous infection also causes lesions under the skin. The drugs used to treat leishmaniasis have become less effective due to the resistance mechanisms of the protozoa.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!