Mechanisms of enhanced HIV spread through T-cell virological synapses.

Immunol Rev

Division of Infectious Disease, Department of Medicine, Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029, USA.

Published: January 2013

An elaborate network of cell-cell interactions in the immune system is essential for vertebrates to mount adaptive immune responses against invading pathogens. For lymphotropic viruses such as the human immunodeficiency virus type 1 (HIV-1), these immune cell interactions can also promote the spread of the virus within the host. The main target of HIV-1 infection is the CD4(+) helper T lymphocyte, a cell type that is responsible for coordinating immune responses and modulating effector responses to foreign antigens. As part of their normal immune surveillance duties, these cells migrate actively within lymphoid tissues and can travel from inductive sites to effector sites in search of their cognate antigen. For CD4(+) T cells, there is an ongoing search for a unique peptide antigen presented in the context of class II MHC that can activate a proliferative or tolerogenic response. This iterative and continual probing and interrogation of other cells determine the outcome of immune responses. Recent studies in vitro have revealed that the viral infection program induces cell-cell interactions called virological synapses between infected and uninfected CD4(+) T cells. These long-lived, virally induced adhesive contacts greatly enhance the rate of productive infection and may be central to the spread of the virus in vivo. Here, we review aspects of this efficient mode of cell-to-cell infection and the implications for our understanding of HIV-1 pathogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/imr.12022DOI Listing

Publication Analysis

Top Keywords

immune responses
12
virological synapses
8
cell-cell interactions
8
spread virus
8
cd4+ cells
8
immune
6
mechanisms enhanced
4
enhanced hiv
4
hiv spread
4
spread t-cell
4

Similar Publications

Advances in RNA editing in hematopoiesis and associated malignancies.

Blood

January 2025

State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College; Center for Stem Cell Medicine,, Tianjin, China.

Adenosine-to-inosine (A-to-I) RNA editing is a prevalent RNA modification essential for cell survival. The process is catalyzed by the Adenosine Deaminase Acting on RNA (ADAR) enzyme family that converts adenosines in double-stranded RNAs (dsRNAs) into inosines, which are read as guanosines during translation. Deep sequencing has helped to reveal that A-to-I editing occurs across various types of RNAs to affect their functions.

View Article and Find Full Text PDF

Most diffuse large B-cell lymphoma (DLBCL) patients treated with immunotherapies such as bispecific antibodies (BsAb) or chimeric antigen receptor (CAR) T cells fail to achieve durable treatment responses, underscoring the need for a deeper understanding of mechanisms that regulate the immune environment and response to treatment. Here, an integrative, multi-omic approach was applied to multiple large independent datasets in order to characterize DLBCL immune environments, and to define their association with tumor cell-intrinsic genomic alterations and outcomes to CD19-directed CAR T-cell and CD20 x CD3 BsAb therapies. This approach effectively segregated DLBCLs into four immune quadrants (IQ) defined by cell-of-origin and immune-related gene set expression scores.

View Article and Find Full Text PDF

A single-cell atlas of the Culex tarsalis midgut during West Nile virus infection.

PLoS Pathog

January 2025

Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA.

The mosquito midgut functions as a key interface between pathogen and vector. However, studies of midgut physiology and virus infection dynamics are scarce, and in Culex tarsalis-an extremely efficient vector of West Nile virus (WNV)-nonexistent. We performed single-cell RNA sequencing on Cx.

View Article and Find Full Text PDF

Background: Antiretroviral therapy (ART) restores cellular immunity, significantly reducing AIDS-related mortality and morbidity thus improving the quality of life among People living with HIV (PLHIV). Studies done in several countries show a decline in AIDS defining cancers (ADCs) with the introduction of ART however the increased longevity has led to the increase of Non-AIDS defining cancers (NADCs). The study was aimed at studying the changing spectrum and trends of cancer among Human Immunodeficiency Virus (HIV) patients in southwestern Uganda.

View Article and Find Full Text PDF

Suppressing Tymovirus replication in plants using a variant of ubiquitin.

PLoS Pathog

January 2025

Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada.

RNA viruses have evolved numerous strategies to overcome host resistance and immunity, including the use of multifunctional proteases that not only cleave viral polyproteins during virus replication but also deubiquitinate cellular proteins to suppress ubiquitin (Ub)-mediated antiviral mechanisms. Here, we report an approach to attenuate the infection of Arabidopsis thaliana by Turnip Yellow Mosaic Virus (TYMV) by suppressing the polyprotein cleavage and deubiquitination activities of the TYMV protease (PRO). Performing selections using a library of phage-displayed Ub variants (UbVs) for binding to recombinant PRO yielded several UbVs that bound the viral protease with nanomolar affinities and blocked its function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!