Spectral and directional reshaping of fluorescence from dye molecules embedded in self-assembled hybrid plasmonic-photonic crystals has been examined. The hybrid crystals comprise two-dimensional hexagonal arrays of dye-doped dielectric nanospheres, capped with silver semishells. Comparing the reshaped fluorescence spectra with measured transmission/reflection spectra and numerical calculations reveals that the spectral and directional reshaping of fluorescence is the result of its coupling to photonic crystal Bloch modes and to void plasmons localized inside the silver caps.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl3035114 | DOI Listing |
A circular waveguide-fed conical horn antenna is fabricated using two-photon lithography (TPL) and integrated with a spintronic terahertz radiation emitter source to provide enhanced radiation directivity. In comparison to the bare terahertz radiation source, incorporating the antenna permits a spectral density gain up to 20.5 dB.
View Article and Find Full Text PDFNature
January 2025
Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada.
Clouds greatly influence the Earth's energy balance. Observationally constraining cloud radiative feedback, a notably uncertain climate feedback mechanism, is crucial for improving predictions of climate change but, so far, remains an elusive objective, and the feedback may be different over the ocean versus over land. Here we show a local negative surface longwave cloud feedback over land at the southern Great Plains site, constrained by direct long-term observation of spectrally resolved downwelling longwave radiance.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States.
Charge detection mass spectrometry (CDMS) allows direct mass measurement of heterogeneous samples by simultaneously determining the charge state and the mass-to-charge ratio (/) of individual ions, unlike conventional MS methods that use large ensembles of ions. CDMS typically requires long acquisition times and the collection of thousands of spectra, each containing tens to hundreds of ions, to generate sufficient ion statistics, making it difficult to interface with the time scales of online separation techniques such as ion mobility. Here, we demonstrate the application of Fourier transform multiplexing and drift tube ion mobility joined with Orbitrap-based CDMS for the analysis of multimeric protein complexes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264000, China.
Constructing multifunctional phosphors grounded in the intricate relationship between energy level structures and luminescent properties has captivated researchers in the luminescent material field. Herein, using the embedded cluster multiconfigurational ab initio method, the energy levels of Bi in the SrLaGaO host at different geometries were calculated, which results in the establishment of complete configurational coordinate curves, yielding breathing mode vibrational frequencies and equilibrium bond lengths for all excited states. These curves supply deep insight into the luminescence properties of Bi-doped phosphors and highlight the impact of ions in the second coordination sphere on luminescence.
View Article and Find Full Text PDFNeuroimage
January 2025
Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA. Electronic address:
Noninvasive brain stimulation of the primary motor cortex has been shown to alter therapeutic outcomes in stroke and other neurological conditions, but the precise mechanisms remain poorly understood. Determining the impact of such neurostimulation on the neural processing supporting motor control is a critical step toward further harnessing its therapeutic potential in multiple neurological conditions affecting the motor system. Herein, we leverage the excellent spatio-temporal precision of magnetoencephalographic (MEG) imaging to identify the spectral, spatial, and temporal effects of high-definition transcranial direct current stimulation (HD-tDCS) on the neural responses supporting motor control.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!