Models for the pathogenesis of myelodysplastic syndrome (MDS) imply the role of individual genetic variations in genes involved in detoxification mechanisms. GSTP1 enzyme plays a key role in the biotransformation of a variety of carcinogens. The corresponding gene is subject to a single nucleotide polymorphism (A(313)G) leading to abolished enzyme activity. In order to evaluate whether the GSTP1 polymorphism influences MDS susceptibility, we conducted a case-control study comprising 310 de novo patients and 370 healthy controls using a real-time polymerase chain reaction (PCR) genotyping method. The GSTP1 gene status was also evaluated in relation to patients' characteristics and chromosomal abnormalities. A significantly higher incidence of the GSTP1 variant genotypes was observed in patients with MDS compared to controls (p < 0.0001). The results revealed increased frequencies of heterozygotes in patients younger than 60 years old and of homozygotes G/G in older patients (p = 0.007). Our results provide evidence for a pathogenetic role of the GSTP1 polymorphism in MDS risk, probably in an age-dependent manner.

Download full-text PDF

Source
http://dx.doi.org/10.3109/10428194.2012.762647DOI Listing

Publication Analysis

Top Keywords

myelodysplastic syndrome
8
gstp1 polymorphism
8
gstp1
5
association a313g
4
a313g glutathione
4
glutathione s-transferase
4
s-transferase germline
4
polymorphism
4
germline polymorphism
4
polymorphism susceptibility
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!