Background: While the decrease in blood carbon dioxide (CO2 ) secondary to hyperventilation is generally accepted to play a major role in the decrease of cerebral tissue oxygen saturation (SctO2 ), it remains unclear if the associated systemic hemodynamic changes are also accountable.

Methods: Twenty-six patients (American Society of Anesthesiologists I-II) undergoing nonneurosurgical procedures were anesthetized with either propofol-remifentanil (n = 13) or sevoflurane (n = 13). During a stable intraoperative period, ventilation was adjusted stepwise from hypoventilation to hyperventilation to achieve a progressive change in end-tidal CO2 (ETCO2 ) from 55 to 25 mmHg. Minute ventilation, SctO2 , ETCO2 , mean arterial pressure (MAP), and cardiac output (CO) were recorded.

Results: Hyperventilation led to a SctO2 decrease from 78 ± 4% to 69 ± 5% (Δ = -9 ± 4%, P < 0.001) in the propofol-remifentanil group and from 81 ± 5% to 71 ± 7% (Δ = -10 ± 3%, P < 0.001) in the sevoflurane group. The decreases in SctO2 were not statistically different between these two groups (P = 0.5). SctO2 correlated significantly with ETCO2 in both groups (P < 0.001). SctO2 also correlated significantly with MAP (P < 0.001) and CO (P < 0.001) during propofol-remifentanil, but not sevoflurane (P = 0.4 and 0.5), anesthesia.

Conclusion: The main mechanism responsible for the hyperventilation-induced decrease in SctO2 is hypocapnia during both propofol-remifentanil and sevoflurane anesthesia. Hyperventilation-associated increase in MAP and decrease in CO during propofol-remifentanil, but not sevoflurane, anesthesia may also contribute to the decrease in SctO2 but to a much smaller degree.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3992996PMC
http://dx.doi.org/10.1111/aas.12054DOI Listing

Publication Analysis

Top Keywords

propofol-remifentanil sevoflurane
16
cerebral tissue
8
tissue oxygen
8
oxygen saturation
8
scto2
8
0001 propofol-remifentanil
8
scto2 correlated
8
decrease scto2
8
sevoflurane anesthesia
8
decrease
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!