We tested whether snow gum (Eucalyptus pauciflora) trees growing in thermally contrasting environments exhibit generalizable temperature (T) response functions of leaf respiration (R) and fluorescence (Fo). Measurements were made on pot-grown saplings and field-grown trees (growing between 1380 and 2110 m a.s.l.). Using a continuous, high-resolution protocol, we quantified T response curves of R and Fo--these data were used to identify an algorithm for modelling R-T curves at subcritical T's and establish variations in heat tolerance. For the latter, we quantified Tmax [T where R is maximal] and Tcrit [T where Fo rises rapidly]. Tmax ranged from 51 to 57 °C, varying with season (e.g. winter summer). Tcrit ranged from 41 to 49 °C in summer and from 58 to 63 °C in winter. Thus, surprisingly, leaf energy metabolism was more heat-tolerant in trees experiencing ice-encasement in winter than warmer conditions in summer. A polynomial model fitted to log-transformed R data provided the best description of the T-sensitivity of R (between 10 and 45 °C); using these model fits, we found that the negative slope of the Q10 -T relationship was greater in winter than in summer. Collectively, our results (1) highlight high-T limits of energy metabolism in E. pauciflora and (2) provide a framework for improving representation of T-responses of leaf R in predictive models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/pce.12057 | DOI Listing |
Plants (Basel)
December 2024
Institute of Agricultural Science and Technology Information, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
Accurate photosynthetic parameters obtained from photosynthetic light-response curves (LRCs) are crucial for enhancing our comprehension of plant photosynthesis. However, the task of fitting LRCs is still demanding due to diverse variations in LRCs under different environmental conditions, as previous models were evaluated based on a limited number of leaf traits and a small number of LRCs. This study aimed to compare the performance of nine LRC models in fitting a set of 108 LRCs measured from paddy rice ( L.
View Article and Find Full Text PDFPlant Cell
January 2025
Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia.
Many C4 plants are used as food and fodder crops and often display improved resource use efficiency compared to C3 plants. However, the response of C4 plants to future extreme conditions such as heatwaves is less understood. Here, Setaria viridis, an emerging C4 model grass, was grown under long-term high temperature stress for two weeks (42°C, compared to 28°C).
View Article and Find Full Text PDFMetab Brain Dis
January 2025
Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.42 Wenhua West Road, Jinan, 250011, P.R. China.
Vascular dementia (VD) is a neurocognitive disorder resulting from cerebral vascular disorders, leading to the demise of neurons and cognitive deficits, posing significant health concerns globally. Derived from Ginkgo biloba leaves, EGb761 is a potent bioactive compound widely recognized for its benefits in treating cerebrovascular diseases. Previous studies have demonstrated that the administration of EGb761 to VD rats enhances the proliferation, differentiation, and migration of neurons, effectively alleviating cognitive dysfunction.
View Article and Find Full Text PDFCancer Genet
January 2025
School of Life Sciences, Shanghai University, Shanghai 200444, China. Electronic address:
CD4 T cells play a pivotal role in the immune system, particularly in adaptive immunity, by orchestrating and enhancing immune responses. CD4 T cell-related immune responses exhibit diverse characteristics in different diseases. This study utilizes gene expression analysis of CD4 T cells to classify and understand complex diseases.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Chemistry and Biochemistry, Geotop Research Center, Concordia University, Montréal, QC, Canada.
The priming effect (PE) refers to the enhanced remineralization of recalcitrant organic carbon (OC) driven by the respiration of labile OC, potentially increasing CO fluxes from aquatic ecosystems. Patterns of PE induced by marine and terrestrial OC inputs can be explored through sedimentary contributions to the degraded OC pool. In this study, coastal sediments (δC = -25.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!