Metastability and chimera states in modular delay and pulse-coupled oscillator networks.

Chaos

Department of Computing, Imperial College London, 180 Queen's Gate, London SW7 2AZ, United Kingdom.

Published: December 2012

Modular networks of delay-coupled and pulse-coupled oscillators are presented, which display both transient (metastable) synchronization dynamics and the formation of a large number of "chimera" states characterized by coexistent synchronized and desynchronized subsystems. We consider networks based on both community and small-world topologies. It is shown through simulation that the metastable behaviour of the system is dependent in all cases on connection delay, and a critical region is found that maximizes indices of both metastability and the prevalence of chimera states. We show dependence of phase coherence in synchronous oscillation on the level and strength of external connectivity between communities, and demonstrate that synchronization dynamics are dependent on the modular structure of the network. The long-term behaviour of the system is considered and the relevance of the model briefly discussed with emphasis on biological and neurobiological systems.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4766592DOI Listing

Publication Analysis

Top Keywords

chimera states
8
synchronization dynamics
8
behaviour system
8
metastability chimera
4
states modular
4
modular delay
4
delay pulse-coupled
4
pulse-coupled oscillator
4
oscillator networks
4
networks modular
4

Similar Publications

DNA Tetrahedron-Driven Multivalent Proteolysis-Targeting Chimeras: Enhancing Protein Degradation Efficiency and Tumor Targeting.

J Am Chem Soc

January 2025

New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China.

Proteolysis-targeting chimeras (PROTACs) are dual-functional molecules composed of a protein of interest (POI) ligand and an E3 ligase ligand connected by a linker, which can recruit POI and E3 ligases simultaneously, thereby inducing the degradation of POI and showing great potential in disease treatment. A challenge in developing PROTACs is the design of linkers and the modification of ligands to establish a multifunctional platform that enhances degradation efficiency and antitumor activity. As a programmable and modifiable nanomaterial, DNA tetrahedron can precisely assemble and selectively recognize molecules and flexibly adjust the distance between molecules, making them ideal linkers.

View Article and Find Full Text PDF

Osteosarcoma (OS) is the most common bone malignancy. c-MET is recognized as a therapeutic target. However, traditional c-MET inhibitors show compromised efficacy due to the acquired resistance and side effects.

View Article and Find Full Text PDF

Rearranged during transfection (RET) kinase is a validated therapeutic target for various cancers characterized by RET alterations. Although two selective RET inhibitors, selpercatinib and pralsetinib, have been approved by the FDA, acquired resistance through solvent-front mutations has been identified rapidly. Developing proteolysis targeting chimera (PROTAC) targeting RET mutations offers a promising strategy to combat drug resistance.

View Article and Find Full Text PDF

A soluble TLR5 is involved in the flagellin-MyD88-mediated immune response via regulation rather than activation in large yellow croaker (Larimichthys crocea).

Comp Biochem Physiol B Biochem Mol Biol

December 2024

State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China. Electronic address:

Toll-like receptor 5 (TLR5) plays a crucial role in the immune response through recognizing bacterial flagellin. Some teleosts possess two forms of TLR5, including a canonical membrane TLR5 (TLR5M) ortholog and a piscine soluble TLR5 (TLR5S). In this report, the full-length cDNA sequences of Larimichthys crocea TLR5M (LcTLR5M) and TLR5S (LcTLR5S) were identified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!