A popular method of measuring the thermal conductivity of thin films and substrates, the "3-omega" method, is modified to yield a new technique for measuring the anisotropy in thermal transport in bulk materials. The validity of the proposed technique is established by measuring the thermal conductivity of strontium titanate, which is expected to be isotropic because of its cubic unit cell. The technique is then applied to rutile TiO(2). The analysis of experimental results on (100) and (001) TiO(2) reveals that the anisotropy is a function of the crystalline quality, as quantified by the effective thermal conductivity obtained through conventional "3-omega" measurements. The advantages of the proposed technique are similar to those of the standard "3-omega" method, namely the simplicity of sample preparation and measurement, and negligible errors due to radiation because of the small volume of material being heated. For anisotropy determination, the proposed technique has the additional advantage that a single sample is sufficient to determine both components of the thermal conductivity, namely the values in and perpendicular to the plane of cleavage. This is significant for materials in which there is a large variation in the crystalline quality from sample to sample. For such materials, it is unreliable to use two different samples, one for measuring the thermal conductivity in each direction. Experimental data are analyzed using a 3D Fourier-series based method developed in this work. The proposed method determines each component of the thermal conductivity with an estimated accuracy of about 10%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4770131 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India.
This study presents a novel optoporation technique using a titanium-coated TiO microstructure (TMS) device activated by an infrared diode laser for highly efficient intracellular delivery. The TMS device, fabricated with 120 nm titanium coating on a titanium dioxide (TiO) microstructure containing microneedles (height ∼2 μm and width ∼4.5 μm), demonstrates enhanced biocompatibility and thermal conductivity compared to the conventional TiO microstructure (MS).
View Article and Find Full Text PDFJ Mol Model
January 2025
School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
Context: SiGe nanotubes (SiGeNTs) hold significant promise for applications in nanosolar cells, optoelectronic systems, and interconnects, where thermal conductivity is critical to performance. This study investigates the effects of length, diameter, temperature, and axial strain on the thermal conductivity of armchair and zigzag SiGeNTs through molecular dynamics simulations. Results indicate that thermal conductivity increases with sample length due to ballistic heat transport and decreases with temperature as phonon scattering intensifies.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Materials Science and Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu 804-8550, Japan.
Self-organization realizes various nanostructures to control material properties such as superconducting vortex pinning and thermal conductivity. However, the self-organization of nucleation and growth is constrained by the growth geometric symmetry. To realize highly controlled three-dimensional nanostructures by self-organization, nanostructure formation that breaks the growth geometric symmetry thermodynamically and kinetically, such as tilted or in-plane aligned nanostructures, is a challenging issue.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
The development of stable, high-performance electrolytes is essential to addressing the safety concerns and limited lifespan caused by the thermal and chemical instability of traditional organic carbonate-based electrolytes in lithium-ion batteries (LIBs). This study examined the potential of mixed solvent systems, specifically ethyl methyl carbonate (EMC) and tetramethylene sulfone (TMS), to modify ion solvation and improve ionic conductivity in LIB electrolytes. Through molecular dynamics simulations, we investigated the solvation structure and transport properties of lithium ions (Li) in these solvent environments.
View Article and Find Full Text PDFChemistryOpen
January 2025
Department of Chemistry, School of Sciences and Humanities, SR University, Warangal, Telangana, 506371, India.
High-entropy alloys (HEAs), containing five or more elements in equal proportions, have recently made significant achievements in materials science due to their remarkable properties, including high toughness, excellent catalytic, thermal, and electrical conductivity, and resistance to wear and corrosion. This study focuses on a HEA composed of 23Fe-21Cr-18Ni-20Ti-18Mn, synthesized via ball milling. The alloy was treated with hydrochloric acid (HCl) to enhance its active surface area.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!