In this work we critically revise several aspects of previous ab initio quantum chemistry studies [P. Palmieri et al., Mol. Phys. 98, 1835 (2000); C. N. Ramachandran et al., Chem. Phys. Lett. 469, 26 (2009)] of the HeH(2)(+) system. New diatomic curves for the H(2)(+) and HeH(+) molecular ions, which provide vibrational frequencies at a near spectroscopic level of accuracy, have been generated to test the quality of the diatomic terms employed in the previous analytical fittings. The reliability of the global potential energy surfaces has also been tested performing benchmark quantum scattering calculations within the time-independent approach in an extended interval of energies. In particular, the total integral cross sections have been calculated in the total collision energy range 0.955-2.400 eV for the scattering of the He atom by the ortho- and para-hydrogen molecular ion. The energy profiles of the total integral cross sections for selected vibro-rotational states of H(2)(+) (v = 0,...,5 and j = 1,...,7) show a strong rotational enhancement for the lower vibrational states which becomes weaker as the vibrational quantum number increases. Comparison with several available experimental data is presented and discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4772651 | DOI Listing |
Commun Biol
January 2025
College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China.
Hibernation is a necessary means for animals to maintain survival while coping with low temperatures and food shortages. While most studies have largely focused on mammalian hibernation, its reptilian equivalent has been less studied. In order to provide insights into the energy metabolism and potential microbial regulatory mechanisms in hibernating snakes, the serum, liver, gut content samples were measured by multi-omic methods.
View Article and Find Full Text PDFSci Rep
January 2025
New materials Technology and Processing Reserearch Center, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran.
The conversion of diluted CO₂ into high-energy fuels is increasingly central to renewable energy research. This study investigates the efficacy of a Gd₂NiMnO₆ dendritic nanofibrous (DNF) photocatalyst in transforming carbon dioxide to methane through photoreduction. Gd₂NiMnO₆ DNF was found to provide active adsorption sites and control the strand dimensions for metal groups, facilitating the chemical absorption of CO₂.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Joint Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China.
Rotator cuff injury (RCI), characterized by shoulder pain and restricted mobility, represents a subset of tendon-bone insertion injuries (TBI). In the majority of cases, surgical reconstruction of the affected tendons or ligaments is required to address the damage. However, numerous clinical failures have underscored the suboptimal outcomes associated with such procedures.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Tianjin University, Department of Chemistry, #92, Weijin Road, Nankai District, Department of Chemistry, School of Science, Tianjin University, 300072, Tianjin, CHINA.
Electrocatalytic oxidation of cyclohexanol/cyclohexanonein water provides a promising strategy for obtaining adipic acid (AA), which is an essential feedstock in the polymer industry. However, this process is impeded by slow kinetics and limited Faradaic efficiency (FE) due to a poor understanding of the reaction mechanism. Herein, NiCo2O4/CeO2 is developed to enable the electrooxidation of cyclohexanol to AA with a 0.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Xiamen University, Department of Chemistry, CHINA.
A pyrrole-fused analogue of warped nanographene, designated as deca-nitrogen doped 'WNG' (azaWNG), was synthesized through the annular fusion of decapyrroylcorannulene. The resulting azaWNG exhibited extremely limited solubility in common organic solvents and was characterized solely by mass spectrometry. Theoretical calculations revealed that azaWNG has a sunflower-like molecular structure with electron-deficient corannulene as the core and electron-rich pyrrole as the petals, demonstrating a significantly narrower energy gap compared to all-carbon WNG.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!