Glycopeptides representing each individual N-glycosylation site in six animal and plant glycoproteins (ovoinhibitor and ovotransferrin, orosomucoid, antitrypsin, phaseolin, and phytohemagglutinin) have been isolated and compared by mass spectrometric analysis. Since the isolation step separates each individual peptide regardless of the nature of the glycan attached to it, it is possible to observe the entire spectrum of glycans associated with each site from the mass spectrum of the corresponding glycopeptide. The three glycosylation sites in ovoinhibitor have very similar but not identical glycans; they are significantly different from those observed in the single site of ovotransferrin. The three sites in serum antitrypsin also have quite similar glycans, whereas the five sites in orosomucoid show considerable variation in both the nature and the relative amount of glycans. The two plant glycoproteins each have two sites with very different glycan structures. Except for the first and third glycosylation sites of antitrypsin which were found to have remarkably homogeneous glycans (97 and 90% of a biantennary complex structure), all the individual glycosylation sites contained heterogeneous mixtures of glycan structures. The results support the proposition that each N-linked glycan in a glycoprotein is affected by its unique protein environment to such an extent that each one may be displayed to the processing enzymes as a unique structural entity. On the basis of a limited number of observations of the glycan interfering with chymotryptic but not tryptic cleavage in the proximity of the glycan attachment site, it is proposed that hydrophobic interactions between the protein and the glycan may be involved in the conformational modulation of the glycans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0003-9861(90)90271-y | DOI Listing |
NPJ Biofilms Microbiomes
January 2025
Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, Zhejiang, China.
Dispersal plays a crucial role in the development and ecology of biofilms. While extensive studies focused on elucidating the molecular mechanisms governing this process, few have characterized the associated temporal changes in composition and structure. Here, we employed solid-state nuclear magnetic resonance (NMR) techniques to achieve time-resolved characterization of Bacillus subtilis biofilms over a 5-day period.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China. Electronic address:
Edible mushroom-derived polysaccharides (EMPs) have been widely used in foods, medicine, and cosmetics due to theirs' diverse and versatile biological activities. Currently, many conventional extraction methods for extracting EMPs are struggling to meet the growing demand, and the produced EMPs with poor quality and low bioactivity. Novel physical field (e.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee;
Cardiovascular disease (CVD) is the leading cause of death in the United States. Damage in the cardiovascular system can be due to environmental exposure, trauma, drug toxicity, or numerous other factors. As a result, cardiac tissue and vasculature undergo structural changes and display diminished function.
View Article and Find Full Text PDFArch Microbiol
January 2025
Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia.
Bacteriophages produce endolysins at the end of the lytic cycle, which are crucial for lysing the host cells and releasing virion progeny. This lytic feature allows endolysins to act as effective antimicrobial alternatives when applied exogenously. Staphylococcal endolysins typically possess a modular structure with one or two enzymatically active N-terminal domains (EADs) and a C-terminal cell wall binding domain (CBD).
View Article and Find Full Text PDFFront Immunol
January 2025
School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
Human milk oligosaccharides (HMOs) are abundant, diverse and complex sugars present in human breast milk. HMOs are well-characterized barriers to microbial infection and by modulating the human microbiome they are also thought to be nutritionally beneficial to the infant. The structural variety of over 200 HMOs, including neutral, fucosylated and sialylated forms, allows them to interact with the immune system in various ways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!