As-ClC (chloride channels protein from Artemia sinica), a member from the chloride channels protein family, is a α-helical membrane protein predicted to traverse the cell membrane 11 times. It is important for several physiological functions such as cell volume regulation, cell proliferation, growth and differentiation. In this paper, the complete cDNA sequence of As-CIC was cloned from A. sinica for the first time using RACE technology. The expression pattern and location of the As-CIC gene was investigated in different stages of the embryonic development by means of quantitative real-time PCR and in situ hybridization (ISH) assay. As-CLC was distributed throughout the whole body in cells of different embryonic development of A. sinica as shown by ISH. There was a low expression level of the As-ClC gene after 0 h and a higher expression level after 15 and 40 h when the embryo entered the next growth period and the environmental salinity changed. At adult stage, the As-ClC maintained a high expression level. The results of the real-time PCR assay showed an increasing trend of As-ClC transcripts with increasing salinity. The expression of As-ClC was higher in the control group (28) than in the experimental group except at a salinity of 200 PSU. It indicated that As-ClC functions as salinity-stress-related gene, probably participated in cell volume regulation and osmotic regulation during the early embryonic development of A. sinica.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-012-2441-yDOI Listing

Publication Analysis

Top Keywords

embryonic development
12
expression level
12
as-clc
8
as-clc gene
8
artemia sinica
8
chloride channels
8
channels protein
8
cell volume
8
volume regulation
8
real-time pcr
8

Similar Publications

100 years Cell and Tissue Research: the founders and their successors.

Cell Tissue Res

January 2025

Institute of Anatomy and Cell Biology, Department of Molecular Embryology, University of Freiburg, 79104, Freiburg, Germany.

One hundred years ago, Cell and Tissue Research was founded under the title "Zeitschrift für Zellen- und Gewebelehre," later "Zeitschrift für Zellforschung und mikroskopische Anatomie." The founders were four eminent German and Swiss cell biologists and zoologists, R. Goldschmidt, W.

View Article and Find Full Text PDF

Mouse embryonic fibroblasts (MEFs) have been widely used as feeder cells in embryonic stem cell cultures because they can mimic the embryonic microenvironment. Milk fat globule-epidermal growth factor 8 (MFGE8) is expressed during mouse gonadal development, 10.5-13.

View Article and Find Full Text PDF

Correlation among blastocoel fluid DNA level, apoptotic genes expression and preimplantation aneuploidy.

Reprod Fertil

January 2025

M Bazrgar, Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran., Tehran, Iran (the Islamic Republic of).

It is believed that aneuploid embryos release cell-free DNA (cfDNA) into the blastocyst cavity during the self-correction process through the apoptotic mechanism. This study aimed to develop less invasive methods for predicting ploidy status by investigating how ploidy status affects blastocoel fluid DNA (BF-DNA) levels and apoptotic gene expression as indicators of embryo viability. Human blastocysts were classified into three groups; Survivable Embryo (SE), Fatal Single and double Aneuploidy (FSDA), and Multiple Aneuploidy (MA) using array comparative genomic hybridization (array-CGH) by trophectoderm (TE) biopsy.

View Article and Find Full Text PDF

TBC1D20 coordinates vesicle transport and actin remodeling to regulate ciliogenesis.

J Cell Biol

April 2025

Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.

TBC1D20 deficiency causes Warburg Micro Syndrome in humans, characterized by multiple eye abnormalities, severe intellectual disability, and abnormal sexual development, but the molecular mechanisms remain unknown. Here, we identify TBC1D20 as a novel Rab11 GTPase-activating protein that coordinates vesicle transport and actin remodeling to regulate ciliogenesis. Depletion of TBC1D20 promotes Rab11 vesicle accumulation and actin deconstruction around the centrosome, facilitating the initiation of ciliogenesis even in cycling cells.

View Article and Find Full Text PDF

Craniofacial development gives rise to the complex structures of the face and involves the interplay of diverse cell types. Despite its importance, our understanding of human-specific craniofacial developmental mechanisms and their genetic underpinnings remains limited. Here, we present a comprehensive single-nucleus RNA sequencing (snRNA-seq) atlas of human craniofacial development from craniofacial tissues of 24 embryos that span six key time points during the embryonic period (4-8 post-conception weeks).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!