Arabidopsis thaliana is an important model organism for understanding the genetics and molecular biology of plants. Its highly selfing nature, small size, short generation time, small genome size, and wide geographic distribution make it an ideal model organism for understanding natural variation. Genome-wide association studies (GWAS) have proven a useful technique for identifying genetic loci responsible for natural variation in A. thaliana. Previously genotyped accessions (natural inbred lines) can be grown in replicate under different conditions and phenotyped for different traits. These important features greatly simplify association mapping of traits and allow for systematic dissection of the genetics of natural variation by the entire A. thaliana community. To facilitate this, we present GWAPP, an interactive Web-based application for conducting GWAS in A. thaliana. Using an efficient implementation of a linear mixed model, traits measured for a subset of 1386 publicly available ecotypes can be uploaded and mapped with a mixed model and other methods in just a couple of minutes. GWAPP features an extensive, interactive, and user-friendly interface that includes interactive Manhattan plots and linkage disequilibrium plots. It also facilitates exploratory data analysis by implementing features such as the inclusion of candidate polymorphisms in the model as cofactors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3556958 | PMC |
http://dx.doi.org/10.1105/tpc.112.108068 | DOI Listing |
PLoS Pathog
January 2025
Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America.
Widespread anthelmintic resistance has complicated the management of parasitic nematodes. Resistance to the benzimidazole (BZ) drug class is nearly ubiquitous in many species and is associated with mutations in beta-tubulin genes. However, mutations in beta-tubulin alone do not fully explain all BZ resistance.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Primate Behavioral Ecology, Institute of Biology, Leipzig University, Leipzig 04103, Germany.
Biological relatedness is a key consideration in studies of behavior, population structure, and trait evolution. Except for parent-offspring dyads, pedigrees capture relatedness imperfectly. The number and length of identical-by-descent DNA segments (IBD) yield the most precise relatedness estimates.
View Article and Find Full Text PDFPLoS One
January 2025
College of Natural and Computational Sciences, Hawai'i Pacific University, Honolulu, HI, United States of America.
Climate change is imposing multiple stressors on marine life, leading to a restructuring of ecological communities as species exhibit differential sensitivities to these stressors. With the ocean warming and wind patterns shifting, processes that drive thermal variations in coastal regions, such as marine heatwaves and upwelling events, can change in frequency, timing, duration, and severity. These changes in environmental parameters can physiologically impact organisms residing in these habitats.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Forestry, University of Gondar, Gondar, Ethiopia.
Owing to its topographic variations, Ethiopia is a biodiversity-rich country. However, the long-term degradation of resources has resulted in isolated forest patches largely around sacred places. Thus, this work was aimed to evaluate the plant community formation and structural dynamics of the Abraham Sacred Forest patch.
View Article and Find Full Text PDFConserv Biol
January 2025
Chair of Wildlife Ecology and Management, Albert Ludwigs University of Freiburg, Freiburg, Germany.
Survival and cause-specific mortality rates are vital for evidence-based population forecasting and conservation, particularly for large carnivores, whose populations are often vulnerable to human-caused mortalities. It is therefore important to know the relationship between anthropogenic and natural mortality causes to evaluate whether they are additive or compensatory. Further, the relation between survival and environmental covariates could reveal whether specific landscape characteristics influence demographic performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!