Approaching chlorpyrifos bioelimination at bench scale bioreactor.

Bioprocess Biosyst Eng

Department of Chemical Engineering, University of Vigo, 36310 Vigo, Spain.

Published: September 2013

Chlorpyrifos (CP) is one of the most commonly applied insecticides for control of pests and insects. The inappropriate use of this kind of chemicals has caused heavy contamination of many terrestrial and aquatic ecosystems thus representing a great environmental and health risk. The main purpose of this work is to investigate novel microbial agents (Pseudomonas stutzeri and the previously obtained consortium LB2) with the ability to degrade CP from polluted effluents. This goal was achieved by operating at different lab scales (flask and bioreactor) and operation modes (batch and fed-batch). Very low degradation and biomass levels were detected in cultures performed with the consortium LB2. In contrast, near complete CP degradation was reached by P. stutzeri at the optimal conditions in less than 1 month, showing a depletion rate of 0.054 h(-1). The scale-up at bench scale stirred tank bioreactor allowed improving the specific degradation rate in ten folds and total CP degradation was obtained after 2 days. Moreover, biomass and biodegradation profiles were modelled to reach a better characterization of the bioremediation process.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00449-012-0876-0DOI Listing

Publication Analysis

Top Keywords

bench scale
8
consortium lb2
8
approaching chlorpyrifos
4
chlorpyrifos bioelimination
4
bioelimination bench
4
scale bioreactor
4
bioreactor chlorpyrifos
4
chlorpyrifos commonly
4
commonly applied
4
applied insecticides
4

Similar Publications

Background: Outpatient Parenteral Antibiotic Therapy (OPAT) services have expanded throughout the world thanks to elastomeric pumps (EP). Their flowrate is known to vary by ±15%. Treatment effectiveness and the organization of care at home may be impacted, especially with piperacillin/tazobactam infusion (TAZ).

View Article and Find Full Text PDF

In this study, we present MedS-Bench, a comprehensive benchmark to evaluate large language models (LLMs) in clinical contexts, MedS-Bench, spanning 11 high-level clinical tasks. We evaluate nine leading LLMs, e.g.

View Article and Find Full Text PDF

Pharmaceuticals and per- and polyfluoroalkyl substances (PFAS) are persistent organic micropollutants (OMPs) posing environmental and health risks due to their bioaccumulative nature and potential toxicity. These OMPs spread to the environment due to the extensive use in today's society. Conventional wastewater treatment plants (WWTPs) are not designed to effectively remove these contaminants, making WWTPs an important pathway, especially for pharmaceuticals, to the aquatic environment.

View Article and Find Full Text PDF

Slopes influenced by multiple faults are prone to large-scale landslides triggered by multi-regional failures. Understanding the failure process and sequence is essential for the sustainable development of mining operations. This paper presents a method combining InSAR monitoring and numerical simulation to analyze the failure processes of slopes affected by multiple faults.

View Article and Find Full Text PDF

Rethinking the biochar impact on the anaerobic digestion of food waste in bench-scale digester: Spatial distribution and biogas production.

Bioresour Technol

January 2025

Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore.

The improvement of biogas production in anaerobic digestion (AD) by biochar introduction has been demonstrated. However, the distribution of biochar in the digester and its effect on AD have been seldom explored. In this study, the distribution of biochar and their impact on AD were investigated in a 30 L semi-continuously operated bench-scale anaerobic digester.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!