Improved techniques for examining rapid dopamine signaling with iontophoresis.

Front Biosci (Elite Ed)

The University of North Carolina at Chapel Hill, Department of Chemistry, CB 3290, Chapel Hill, NC 27599-3290, USA.

Published: January 2013

Dopamine is a neurotransmitter that is utilized in brain circuits associated with reward processing and motor activity. Advances in microelectrode techniques and cyclic voltammetry have enabled its extracellular concentration fluctuations to be examined on a subsecond time scale in the brain of anesthetized and freely moving animals. The microelectrodes can be attached to micropipettes that allow local drug delivery at the site of measurement. Drugs that inhibit dopamine uptake or its autoreceptors can be evaluated while only affecting the brain region directly adjacent to the electrode. The drugs are ejected by iontophoresis in which an electrical current forces the movement of molecules by a combination of electrical migration and electroosmosis. Using electroactive tracer molecules, the amount ejected can be measured with cyclic voltammetry. In this review we will give an introduction to the basic principles of iontophoresis, including a historical account on the development of iontophoresis. It will also include an overview of the use of iontophoresis to study neurotransmission of dopamine in the rat brain. It will close by summarizing the advantages of iontophoresis and how the development of quantitative iontophoresis will facilitate future studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3730446PMC
http://dx.doi.org/10.2741/e612DOI Listing

Publication Analysis

Top Keywords

cyclic voltammetry
8
iontophoresis will
8
iontophoresis
7
improved techniques
4
techniques examining
4
examining rapid
4
dopamine
4
rapid dopamine
4
dopamine signaling
4
signaling iontophoresis
4

Similar Publications

Although performance enhancements due to trace Fe incorporation into Ni catalysts for the oxygen evolution reaction (OER) have been well documented, the effects of trace versus bulk Fe incorporation into Ni catalysts for the ethanol oxidation reaction (EOR)─a promising anodic alternative to OER─are unclear. Herein, we perform extensive cyclic voltammetry experiments on Ni-based thin films to show that trace Fe incorporation from electrolyte impurities has a minimal impact on EOR performance, while codeposited Fe significantly suppresses catalytic current (by half at 1.5 V).

View Article and Find Full Text PDF

In the current work, the MWCNTs/ZnO nanocomposite was successfully synthesized using simple method. Then, FE-SEM, XRD, and EDX techniques were applied for morphological and structural characterization. Afterward, a sensitive voltammetric sensor based on modification of a screen-printed carbon electrode (SPCE) using MWCNTs/ZnO nanocomposite was developed for the determination of doxorubicin in the presence of dacarbazine.

View Article and Find Full Text PDF

Carboxylated Graphene: An Innovative Approach to Enhanced IgA-SARS-CoV-2 Electrochemical Biosensing.

Biosensors (Basel)

January 2025

LABEL-Laboratório de Bioeletrônica e Eletroanalítica, Central Analítica Multidisciplinar, Universidade Federal do Amazonas, Manaus 69067-005, Amazonas, Brazil.

Biosensors harness biological materials as receptors linked to transducers, enabling the capture and transformation of primary biorecognition signals into measurable outputs. This study presents a novel carboxylation method for synthesizing carboxylated graphene (CG) under acidic conditions, enhancing biosensing capabilities. The characterization of the CG was performed using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Raman spectroscopy, thermogravimetric analysis (TGA), and X-ray diffraction (XRD).

View Article and Find Full Text PDF

This study presents the characterization of a novel multilayered three-dimensional (3D) polymer exhibiting aggregation-induced emission (AIE) properties when excited at a low wavelength of 280 nm. Utilizing fluorescence spectroscopy, we demonstrate that the polymer displays a marked enhancement in luminescence upon aggregation, a characteristic behavior that distinguishes AIE-active materials from conventional fluorophores. Furthermore, we explore the potential application of this multilayered 3D polymer as a fluorescent probe for the selective detection of specified metal ions.

View Article and Find Full Text PDF

This study examined the electrodissolution mechanism of five impure sphalerite samples, which differ significantly in purity levels, along with their partially oxidized counterparts in a 0.5 M HSO. Partially oxidized samples were prepared through an incomplete leaching of sphalerite using HSO with Fe(SO).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!