TLR9 signaling defines distinct prognostic subsets in CLL.

Front Biosci (Landmark Ed)

Molecular Hematology, International Centre for Genetic Engineering and Biotechnology, Campus A. Buzzati-Traverso, Via E. Ramarini 32, I-00016 Monterotondo Scalo, Rome, Italy.

Published: January 2013

Chronic lymphocytic leukemia (CLL) is a common B-cell malignancy characterized by a highly variable clinical course. The behavior of the disease is believed to be influenced by microenvironmental signals that regulate the proliferation and survival of the malignant B-cells. Signals transduced through Toll-like-receptor-9 (TLR9) may play a particularly important role, as they could drive the expansion of a subset of cells that express B-cell receptors reactive with DNA or DNA-containing complexes. Interestingly, leukemic cells from patients with aggressive disease respond more effectively to TLR9 stimulation than their less aggressive counterparts, suggesting that the capacity to respond to TLR9 signals can define distinct prognostic subsets in CLL. The exact mechanism(s) accounting for the variability in the response to TLR9 engagement are still unclear, although important differences have been observed between prognostic groups in terms of downstream signaling events and gene- and miRNA-expression profiles. Understanding the mechanism(s) that underlie the different TLR9 responses should provide further insight in the pathophysiology of CLL and may lead to the identification of novel targets for therapeutic intervention.

Download full-text PDF

Source
http://dx.doi.org/10.2741/4108DOI Listing

Publication Analysis

Top Keywords

distinct prognostic
8
prognostic subsets
8
subsets cll
8
tlr9
6
tlr9 signaling
4
signaling defines
4
defines distinct
4
cll
4
cll chronic
4
chronic lymphocytic
4

Similar Publications

Role of immune cell homeostasis in research and treatment response in hepatocellular carcinoma.

Clin Exp Med

January 2025

Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.

Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.

View Article and Find Full Text PDF

Background: Most older patients with atrial fibrillation (AF) have comorbidities. However, it is unclear whether specific comorbidity patterns are associated with adverse outcomes. We identified comorbidity patterns and their association with mortality in multimorbid older AF patients with different multidimensional frailty.

View Article and Find Full Text PDF

The transcriptomic classification of primary colorectal cancer (CRC) into distinct consensus molecular subtypes (CMSs) is a well-described strategy for patient stratification. However, the molecular nature of CRC metastases remains poorly investigated. To this end, this study aimed to identify and compare organotropic CMS frequencies in CRC liver and brain metastases.

View Article and Find Full Text PDF

Lung cancer is the most common and deadly cancer worldwide. The 9th edition of the tumor node meta (TNM) classification system, effective from January 1, 2025, introduces significant updates. Notably, the N2 category is newly divided into N2a (single-station involvement) and N2b (multiple-station involvement), which reflects distinct prognostic implications.

View Article and Find Full Text PDF

Exploring treatment-driven subclonal evolution of prognostic triple biomarkers: Dual gene fusions and chimeric RNA variants in novel subtypes of acute myeloid leukemia patients with KMT2A rearrangement.

Drug Resist Updat

January 2025

Loma Linda University Cancer Center, Loma Linda, CA 92354, United States; Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, United States. Electronic address:

Chromosomal rearrangements (CR) initiate leukemogenesis in approximately 50 % of acute myeloid leukemia (AML) patients; however, limited targeted therapies exist due to a lack of accurate molecular and genetic biomarkers of refractory mechanisms during treatment. Here, we investigated the pathological landscape of treatment resistance and relapse in 16 CR-AML patients by monitoring cytogenetic, RNAseq, and genome-wide changes among newly diagnosed, refractory, and relapsed AML. First, in FISH-diagnosed KMT2A (MLL gene, 11q23)/AFDN (AF6, 6q27)-rearrangement, RNA-sequencing identified an unknown CCDC32 (15q15.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!