Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: A novel analysis was undertaken to select a significant ultrasonographic parameter (USP) for classifying fetuses to support artificial neural network (ANN), and thus to enhance the accuracy of fetal weight estimation.
Methods: In total, 2127 singletons were examined by prenatal ultrasound within 3 days before delivery. First, correlation analysis was used to determine a significant USP for fetal grouping. Second, K-means algorithm was utilized for fetal size classification based on the selected USP. Finally, stepwise regression analysis was used to examine input parameters of the ANN model.
Results: The estimated fetal weight (EFW) of the new model showed mean absolute percent error (MAPE) of 5.26 ± 4.14% and mean absolute error (MAE) of 157.91 ± 119.90 g. Comparison of EFW accuracy showed that the new model significantly outperformed the commonly-used EFW formulas (all p < 0.05).
Conclusion: We proved the importance of choosing a specific grouping parameter for ANN to improve EFW accuracy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tjog.2012.09.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!