Severity: Warning
Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To evaluate the phage endolysin SAL-1 as a therapeutic agent for Staphylococcus aureus infections, the in vitro and in vivo antibacterial properties of a pre-formulation containing recombinant SAL-1 as an active pharmaceutical ingredient were investigated. The stable pre-formulation (designated SAL200) uniquely included calcium ions and Poloxamer 188 as enhancing and stabilising ingredients, respectively. SAL-1 was successfully produced with no extraneous amino acids by decreasing the culture temperature and was highly purified using a two-step chromatography procedure consisting of ion exchange and hydrophobic interaction chromatography. SAL200 exhibited rapid and effective bactericidal activity against encapsulated and biofilm-forming S. aureus as well as against planktonic S. aureus cells. In addition, SAL200 demonstrated increased effectiveness in the serum environment, with a significantly reduced minimum bactericidal concentration compared with that determined in culture medium. In in vitro antibacterial tests performed against 425 clinical isolates [including 336 meticillin-resistant S. aureus (MRSA) isolates and 1 vancomycin-intermediate S. aureus isolate], collected from 421 patients and four animals, SAL200 exhibited obvious antibacterial activity against all S. aureus isolates tested. Intravenous injection of SAL200 in a mouse model of MRSA infection prolonged the viability of mice and significantly reduced bacterial counts in the bloodstream and splenic tissue. The results presented in this article strongly support SAL200 as a highly potent bactericidal agent against MRSA with an adequate pharmaceutical formulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijantimicag.2012.10.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!