Unlabelled: Structural analysis of the high-mobility group protein B1 (HMGB1)-DNA complex and a docking simulation between glycyrrhetinic acid (GA) and the HMGB1-DNA complex were performed with a software package the Molecular Operating Environment (MOE). An HMGB1-DNA (PDB code: 2GZK) was selected for the 3D structure modeling of the HMGB1-DNA complex. The Site Finder module of the MOE identified 16 possible ligand-binding sites in the modeled HMGB1-DNA complex. The docking simulation revealed that GA possibly inhibits functions of HMGB1 interfering with Lys(90), Arg(91), Ser(101), Tyr(149), C(230) and C(231) in the HMGB1-DNA complex. To the best of our knowledge, this is the first report of an HMGB1-DNA complex with GA, and our data verify that the GA-HMGB1-DNA model can be utilized for application to target HMGB1 for the development of antitumor drugs.

Abbreviations: ASE-Dock - alpha sphere and excluded volume-based ligand-protein docking, CNS - central nervous system, GA - glycyrrhetinic acid, GL - glycyrrhizin, HMGB1 - high-mobility group protein B1, LBS - ligand-biding site, MOE - Molecular Operating Environment, SRY - sex-determining region on the Y chromosome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3530883PMC
http://dx.doi.org/10.6026/97320630081147DOI Listing

Publication Analysis

Top Keywords

hmgb1-dna complex
28
glycyrrhetinic acid
12
high-mobility group
12
group protein
12
hmgb1-dna
8
protein hmgb1-dna
8
complex docking
8
docking simulation
8
molecular operating
8
operating environment
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!