Copper plays an essential role in the function and development of the central nervous system and exocrine pancreas. Dietary copper limitation is known to result in noninflammatory atrophy of pancreatic acinar tissue. Our recent studies have suggested that vagal motoneurons regulate pancreatic exocrine secretion (PES) by activating selective subpopulations of neurons within vagovagal reflexive neurocircuits. We used a combination of in vivo, in vitro, and immunohistochemistry techniques in a rat model of copper deficiency to investigate the effects of a copper-deficient diet on the neural pathways controlling PES. Duodenal infusions of Ensure or casein, as well as microinjections of sulfated CCK-8, into the dorsal vagal complex resulted in an attenuated stimulation of PES in copper-deficient animals compared with controls. Immunohistochemistry of brain stem slices revealed that copper deficiency reduced the number of tyrosine hydroxylase-immunoreactive, but not neuronal nitric oxide synthase- or choline acetyltransferase-immunoreactive, neurons in the dorsal motor nucleus of the vagus (DMV). Moreover, a copper-deficient diet reduced the number of large (>11 neurons), but not small, intrapancreatic ganglia. Electrophysiological recordings showed that DMV neurons from copper-deficient rats are less responsive to CCK-8 or pancreatic polypeptide than are DMV neurons from control rats. Our results demonstrate that copper deficiency decreases efferent vagal outflow to the exocrine pancreas. These data indicate that the combined selective loss of acinar pancreatic tissue and the decreased excitability of efferent vagal neurons induce a deficit in the vagal modulation of PES.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6842873PMC
http://dx.doi.org/10.1152/ajpgi.00402.2012DOI Listing

Publication Analysis

Top Keywords

copper deficiency
12
pancreatic exocrine
8
copper-deficient rats
8
exocrine pancreas
8
copper-deficient diet
8
reduced number
8
dmv neurons
8
efferent vagal
8
neurons
6
pancreatic
5

Similar Publications

Introduction: Copper is an essential trace element crucial for enzyme synthesis and metabolism. Adequate copper levels are beneficial for maintaining the normal immune function of the spleen. Copper deficiency disrupts the metabolic processes within the spleen and impairs its immune function.

View Article and Find Full Text PDF

Background/objectives: Histamine intolerance is primarily caused by a deficiency in the diamine oxidase (DAO) enzyme at the intestinal level. The reduced histamine degradation in the gut leads to its accumulation in plasma, thereby causing multiple clinical manifestations, such as urticaria, diarrhea, headache, dyspnea, or tachycardia, among others. The dietary management of this food intolerance consists of the follow-up of a low-histamine diet, often combined with DAO supplementation.

View Article and Find Full Text PDF

This study evaluates the nutritional potential of two cultivated snail species, and , sourced from commercial farms in Korea, marking the first comprehensive analysis of . The protein content of (70.9 g/100 g dry matter) was significantly higher than that of (44.

View Article and Find Full Text PDF

The translocation of proteins from the cytoplasm to the endoplasmic reticulum occurs via a conserved Sec61 protein channel. Previously, we reported that mutations in histones cause downregulation of a CUP1 copper metallothionein and copper exposure inhibits the activity of Sec61. However, the role of epigenetic dysregulation on the activity of channel is not clear.

View Article and Find Full Text PDF

Metabolic-dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease in the Western world. MASLD-associated cirrhosis prevalence is on the rise along with the obesity and metabolic syndrome epidemic. Genetic factors are included in the multi-hit model of MASLD pathogenesis and insulin-like growth factor-1 (IGF-1) has an important role.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!