AI Article Synopsis

  • The study aims to determine if changes in membrane fluidity affect how sensitive cells are to the anticancer drug perifosine (OPP), which targets cell membranes rather than DNA.
  • The research involved examining the effects of OPP on different cell lines, including resistant and sensitive breast cancer cells, using specialized techniques to measure membrane structure and fluidity.
  • Results showed that while OPP increased membrane fluidity at high concentrations, this change did not correlate with the cells' sensitivity to the drug, suggesting that membrane fluidity is not the key factor in OPP sensitivity, but rather cell growth rate may be more relevant.*

Article Abstract

Aim: To test whether membrane fluidity and its changes are important for the sensitivity of cells to the action of perifosine (OPP), a new anticancer drug targeting cell membrane and not DNA.

Method: Influence of OPP on the membrane structure of OPP-resistant MCF7, and OPP-sensitive MT3 breast cancer cell lines, as well as of mouse fibroblasts (L929) cell lines, and model cells (liposomes) was investigated by electron paramagnetic resonance, using spin labeled derivative of OPP (P5) and 5-doxylpalmitoyl methylester (MeFASL(10,3)) as spin probes.

Results: OPP increased membrane fluidity of all cell lines at concentrations higher than 50 μM (on the level of P≤0.05, t test). In cells, the differences were observed only by P5 and not by MeFASL(10,3). Average order parameter Seff decreased for about 12% in MCF7 and L929 and only for 8% in OPP-sensitive MT3 cells, showing that there was no correlation between membrane fluidity changes and sensitivity of cells to OPP. The only correlation we found was between OPP sensitivity and the cell growth rate. In liposomes, both spin probes were sensitive to the action of OPP. Seff decreased with increasing concentration of OPP. For MeFASL(10,3) a significant decrease was observed at 4 mol% OPP, while for P5 it was observed at 8 mol%.

Conclusion: Influence of OPP on plasma membrane fluidity of breast cancer cells is not the determining factor in the sensitivity of cells to OPP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3541582PMC
http://dx.doi.org/10.3325/cmj.2012.53.558DOI Listing

Publication Analysis

Top Keywords

membrane fluidity
20
cell lines
16
sensitivity cells
12
opp
11
electron paramagnetic
8
paramagnetic resonance
8
fluidity changes
8
changes sensitivity
8
influence opp
8
opp-sensitive mt3
8

Similar Publications

Omega-3 fatty acids reduce triglycerides and have several positive effects on different organs and systems. They are also found in the plasma membrane in variable amounts in relation to genetics and diet. However, it is still unclear whether omega-3 supplementation can reduce the occurrence of major cardiovascular events (MACEs).

View Article and Find Full Text PDF

Melittin-Induced Structural Transformations in DMPG and DMPS Lipid Membranes: A Langmuir Monolayer and AFM Study.

Molecules

December 2024

Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, ul. Zwirki i Wigury 101, 02-089 Warsaw, Poland.

In this study, we explore the interactions between melittin, a cationic antimicrobial peptide, and model lipid membranes composed of the negatively charged phospholipids 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) and 1,2-dimyristoyl-sn-glycero-3-phosphoserine (DMPS). Using the Langmuir monolayer technique and atomic force microscopy (AFM), we reveal novel insights into these interactions. Our key finding is the observation of the ripple phase in the DMPS bilayer on mica, a phenomenon not previously reported for negatively charged single bilayers.

View Article and Find Full Text PDF

Exploring the Interaction of 3-Hydroxy-4-pyridinone Chelators with Liposome Membrane Models: Insights from DSC and EPR Analysis.

Molecules

December 2024

REQUIMTE, LAQV, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.

In this study, we synthesized a series of 3-hydroxy-4-pyridinone (3,4-HPO) chelators with varying lipophilicity by modifying the length of their alkyl chains. To investigate their interaction with lipid membranes, we employed differential scanning calorimetry (DSC) and electron paramagnetic resonance (EPR) spectroscopy using dimyristoylphosphatidylcholine (DMPC) and palmitoyloleoylphosphatidylcholine (POPC) liposomes as membrane model systems. DSC experiments on DMPC liposomes revealed that hexyl-substituted chelators significantly altered the thermotropic phase behavior of the lipid bilayer, indicating their potential as membrane property modulators.

View Article and Find Full Text PDF

Mechanistic insights into endosomal escape by sodium oleate-modified liposomes.

Beilstein J Nanotechnol

December 2024

Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung (ITB), Bandung 40132, Indonesia.

Endosomal entrapment significantly limits the efficacy of drug delivery systems. This study investigates sodium oleate-modified liposomes (SO-Lipo) as an innovative strategy to enhance endosomal escape and improve cytosolic delivery in 4T1 triple-negative breast cancer cells. We aimed to elucidate the mechanistic role of sodium oleate in promoting endosomal escape and compared the performance of SO-Lipo with unmodified liposomes (Unmodified-Lipo) and Aurein 1.

View Article and Find Full Text PDF

Fixing photosystem II: Membrane fluidity facilitates FtsH functions.

Plant Cell

January 2025

Assistant Features Editor, The Plant Cell, American Society of Plant Biologists, USA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!