Background: The mechanisms under neurally mediated syncope (NMS) are not fully understood. This study aimed to assess the level of storage iron in children with different hemodynamic patterns in head-up tilt test.
Methods: Altogether 210 children (11.31±2.49 years) with syncope or pre-syncope treated between May 2008 and September 2010 were studied prospectively. Following history taking and physical examination, their levels of hemoglobin (Hb), hematocrit (Hct) and serum ferritin were measured.
Results: In the 210 children, 162 (77.1%) had NMS and 48 (22.9%) had syncope due to other causes. In the 162 children with NMS, 98 children were subjected to positive tilt test. The level of serum ferritin was significantly lower in the 98 children with NMS (P<0.001). The comparison of levels of Hb, Hct and mean cell volume (MCV) displayed no significant difference between the two groups. Reduced iron storage (serum ferritin <25 ng/mL) was found to be more prevalent in children with NMS (63% vs. 20%, P<0.001). Prevalence of iron deficiency was also significantly higher in children with NMS than in children with syncope due to other causes (27% vs. 6%, P=0.003).
Conclusions: In head-up tilt test positive children with NMS, the level of serum ferritin should be evaluated. Low storage iron may be one of the underlying mechanisms of NMS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12519-012-0396-7 | DOI Listing |
G3 (Bethesda)
January 2025
W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
The mosquito Aedes aegypti is an emerging model insect for invertebrate neurobiology. We detail the application of a dual transgenesis marker system that reports the nature of transgene integration with circular donor template for CRISPR-Cas9-mediated homology-directed repair at target mosquito chemoreceptor genes. Employing this approach, we demonstrate the establishment of cell-type-specific T2A-QF2 driver lines for the A.
View Article and Find Full Text PDFToxics
January 2025
School of Public Health, North China University of Science and Technology, Tangshan 063210, China.
Hypertension is not merely a vascular disorder but a significant risk factor for neural impairment. Moreover, healthcare for the hypertensive population with environmental or occupational pollutants has become an issue of increasing concern in public health. As a traditional neurotoxic heavy metal, Pb exposure results in neuroinflammation as well as neurodegenerative diseases.
View Article and Find Full Text PDFBrain Sci
January 2025
Department of Physiology, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea.
The significant correlation between ancient medicinal practices and brain function marks a revolutionary frontier in the field of neuroscience. Acupuncture, a traditional oriental medicine, can affect brain regions, such as the hypothalamus, anterior cingulate, posterior cingulate, and hippocampus, and produces specific therapeutic effects, such as pain relief, suppression of hypertension, and alleviation of drug addiction. Among the brain regions, the hypothalamus, a small yet critical region in the brain, plays a pivotal role in maintaining homeostasis by regulating a wide array of physiological processes, including stress responses, energy balance, and pain modulation.
View Article and Find Full Text PDFNeural Regen Res
December 2024
College of Computer Science, Sichuan Normal University, Chengdu, Sichuan Province, China.
Alzheimer's disease, a progressively degenerative neurological disorder, is the most common cause of dementia in the elderly. While its precise etiology remains unclear, researchers have identified diverse pathological characteristics and molecular pathways associated with its progression. Advances in scientific research have increasingly highlighted the crucial role of non-coding RNAs in the progression of Alzheimer's disease.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Key Laboratory of Tropical Translational Medicine and Ministry of Education, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China.
Axon guidance is a key event in neural circuit development that drives the correct targeting of axons to their targets through long distances and unique patterns. Exosomes, extracellular vesicles that are smaller than 100 nm, are secreted by most cell types in the brain. Regulation of cell-cell communication, neuroregeneration, and synapse formation by exosomes have been extensively studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!