Avian pathogenic Escherichia coli (APEC) causes respiratory and systemic disease in poultry. Sequencing of a multilocus sequence type 95 (ST95) serogroup O1 strain previously indicated that APEC resembles E. coli causing extraintestinal human diseases. We sequenced the genomes of two strains of another dominant APEC lineage (ST23 serogroup O78 strains χ7122 and IMT2125) and compared them to each other and to the reannotated APEC O1 sequence. For comparison, we also sequenced a human enterotoxigenic E. coli (ETEC) strain of the same ST23 serogroup O78 lineage. Phylogenetic analysis indicated that the APEC O78 strains were more closely related to human ST23 ETEC than to APEC O1, indicating that separation of pathotypes on the basis of their extraintestinal or diarrheagenic nature is not supported by their phylogeny. The accessory genome of APEC ST23 strains exhibited limited conservation of APEC O1 genomic islands and a distinct repertoire of virulence-associated loci. In light of this diversity, we surveyed the phenotype of 2,185 signature-tagged transposon mutants of χ7122 following intra-air sac inoculation of turkeys. This procedure identified novel APEC ST23 genes that play strain- and tissue-specific roles during infection. For example, genes mediating group 4 capsule synthesis were required for the virulence of χ7122 and were conserved in IMT2125 but absent from APEC O1. Our data reveal the genetic diversity of E. coli strains adapted to cause the same avian disease and indicate that the core genome of the ST23 lineage serves as a chassis for the evolution of E. coli strains adapted to cause avian or human disease via acquisition of distinct virulence genes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3584874 | PMC |
http://dx.doi.org/10.1128/IAI.00585-12 | DOI Listing |
J Anim Physiol Anim Nutr (Berl)
December 2024
Poultry Diseases Department, Veterinary Research Institute, National Research Centre, Dokki, Egypt.
We investigated the effect of propolis as a sanitiser on hatched eggs previously infected with avian Pathogenic Escherichia coli (E. coli) (APEC) serogroup O78. A green propolis watery extract at 24% and a native breed hatching eggs have been used in this study.
View Article and Find Full Text PDFPoult Sci
December 2024
Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens GA 30602, USA. Electronic address:
Avian pathogenic Escherichia coli (APEC) is a significant cause of worldwide morbidity, mortality, and production loss in the poultry industry. Here, we characterized 115 E. coli isolates from avian-diagnosed colibacillosis cases from Georgia, USA in 2022 as part of a year two follow on surveillance using both current and a newly developed serogrouping tool (Klao9-SeroPCR).
View Article and Find Full Text PDFMolecules
October 2024
Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland.
Outer membrane vesicles (OMVs) are extracellular structures, ranging in size from 10 to 300 nm, produced by Gram-negative bacteria. They can be incorporated into the outer membrane of a recipient's cells, which may enable the transfer of substances with lytic properties. Due to the scarce information regarding the OMVs produced by , the aim of this study was to test the blebbing abilities of the clinical O77 and O78 strains and to determine the blebs' interactions with bacterial cells, including their possible bactericidal activities.
View Article and Find Full Text PDFMicrob Pathog
September 2024
Institut National de La Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada; Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada. Electronic address:
Front Microbiol
June 2024
College of Veterinary Medicine, Xinjiang Agricultural University, Xinjiang, China.
Colibacillosis caused by Avian pathogenic (APEC), including peritonitis, respiratory tract inflammation and ovaritis, is recognized as one of the most common and economically destructive bacterial diseases in poultry worldwide. In this study, the characteristics and inhibitory potential of phages were investigated by double-layer plate method, transmission electron microscopy, whole genome sequencing, bioinformatics analysis and animal experiments. The results showed that phages C-3 and G21-7 isolated from sewage around goose farms infected multiple O serogroups (O1, O2, O18, O78, O157, O26, O145, O178, O103 and O104) () with a multiplicity of infection (MOI) of 10 and 1, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!