Adult β-cell dysfunction, a hallmark of type 2 diabetes, can be programmed by adverse fetal environment. We have shown that fetal glucocorticoids (GCs) participate in this programming through inhibition of β-cell development. Here we have investigated the molecular mechanisms underlying this regulation. We showed that GCs stimulate the expression of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), a coregulator of the GCs receptor (GR), and that the overexpression of PGC-1α represses genes important for β-cell development and function. More precisely, PGC-1α inhibited the expression of the key β-cell transcription factor pancreatic duodenal homeobox 1 (Pdx1). This repression required the GR and was mediated through binding of a GR/PGC-1α complex to the Pdx1 promoter. To explore PGC-1α function, we generated mice with inducible β-cell PGC-1α overexpression. Mice overexpressing PGC-1α exhibited at adult age impaired glucose tolerance associated with reduced insulin secretion, decreased β-cell mass, and β-cell hypotrophy. Interestingly, PGC-1α expression in fetal life only was sufficient to impair adult β-cell function whereas β-cell PGC-1α overexpression from adult age had no consequence on β-cell function. Altogether, our results demonstrate that the GR and PGC-1α participate in the fetal programming of adult β-cell function through inhibition of Pdx1 expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3609553PMC
http://dx.doi.org/10.2337/db12-0314DOI Listing

Publication Analysis

Top Keywords

pgc-1α overexpression
12
β-cell
12
adult β-cell
12
β-cell function
12
pgc-1α
9
β-cell dysfunction
8
β-cell development
8
β-cell pgc-1α
8
adult age
8
adult
6

Similar Publications

ERMP1 as a newly identified ER stress gatekeeper in chronic kidney disease.

Am J Physiol Renal Physiol

January 2025

Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.

ERMP1 is involved in the Unfolded Protein Response (UPR) pathway in response to endoplasmic reticulum (ER) stress. Given the pivotal role of ER stress in the pathogenesis of acute and chronic kidney diseases, we hypothesized that ERMP1 could be instrumental in the development of renal injury. analysis of RNA sequencing datasets from renal biopsies were exploited to assess the expression of ERMP1 in the kidney under normal or pathological conditions.

View Article and Find Full Text PDF

PagSND1-B1 Regulates Wood Formation by Influencing Phosphorus Absorption and Distribution in Poplar.

Plant Cell Environ

January 2025

State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China.

In natural environments, the growth and development of trees are continuously affected by phosphorus (P) starvation stress. However, the mechanisms through which trees balance stem growth and P distribution remain unknown. This study found that in the woody model species poplar, the P loss in stems is more severe than that in roots and leaves under P starvation conditions, thereby inhibiting stem development and reducing the expression of numerous genes related to wood formation, including PagSND1-B1.

View Article and Find Full Text PDF

Background/purpose: Oral squamous cell carcinoma (OSCC) is a common malignancy often associated with poor prognosis due to chemoresistance. In this study, we investigated whether arecoline, a major alkaloid in betel nuts, can stimulate aldo-keto reductase family 1 member B10 (AKR1B10) levels in OSCC, promoting cancer stemness and leading to resistance to cisplatin (CDDP)-based chemotherapy.

Materials And Methods: Gain- and Loss- of AKR1B10 functions were analyzed using WB and q-PCR of OSCC cells.

View Article and Find Full Text PDF

Background/purpose: Nucleotide-binding oligomerization domain-like receptor family caspase recruitment domain containing protein 5 (NLRC5) plays a regulatory role in innate and adaptive immunity. However, its role in periodontitis remains unclear. This study investigated the effects of NLRC5 on periodontitis and the underlying mechanism.

View Article and Find Full Text PDF

Background/purpose: The local inflammatory microenvironment created by periodontitis negatively impacts periodontal tissue regeneration, necessitating the development of methods to enhance the regenerative capacity of stem cells. This study explored the regulatory role and underlying mechanism of miR-508-5p in the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs).

Materials And Methods: The regulatory roles of miR-508-5p in osteogenic differentiation of hPDLSCs were investigated through its inhibition or overexpression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!