During alcoholic fermentation, the products build up and can, ultimately, kill the organism due to their effects on the cell's macromolecular systems. The effects of alcohols on the steady-state kinetic parameters of the model enzyme β-galactosidase were studied. At modest concentrations (0 to 2 M), there was little effect of methanol, ethanol, propanol and butanol on the kinetic constants. However, above these concentrations, each alcohol caused the maximal rate, V(max), to fall and the Michaelis constant, K(m), to rise. Except in the case of methanol, the chaotropicity of the solute, rather than its precise chemical structure, determined and can, therefore, be used to predict inhibitory activity. Compounds which act as compatible solutes (e.g. glycerol and other polyols) generally reduced enzyme activity in the absence of alcohols at the concentration tested (191 mM). In the case of the ethanol- or propanol-inhibited β-galactosidase, the addition of compatible solutes was unable to restore the enzyme's kinetic parameters to their uninhibited levels; addition of chaotropic solutes such as urea tended to enhance the effects of these alcohols. It is possible that the compatible solutes caused excessive rigidification of the enzyme's structure, whereas the alcohols disrupt the tertiary and quaternary structure of the protein. From the point of view of protecting enzyme activity, it may be unwise to add compatible solutes in the early stages of industrial fermentations; however, there may be benefits as the alcohol concentration increases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-012-0003-3 | DOI Listing |
Stat Med
February 2025
U.S. Food and Drug Administration, Silver Spring, Maryland.
The recent U.S. Food and Drug Administration guidance on complex innovative trial designs acknowledges the use of Bayesian strategies to incorporate historical information based on clinical expertise and data similarity.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Industrial Engineering and Mathematical Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy.
The effective knowledge of emissivity is pivotal to obtain reliable temperature measurements through non-contact techniques like pyrometry and thermal imaging. This is fundamental in high-temperature applications since material emissivity strongly depends on temperature conditions. Given the recent attention in high-temperature applications, especially for replacing fossil-fuel-dependent heating with greener solutions in energy-intensive processes, renewed interest in characterizing materials radiant properties rose.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.
Ultrasound imaging is widely valued for its safety, non-invasiveness, and real-time capabilities but is often limited by operator variability, affecting image quality and reproducibility. Robot-assisted ultrasound may provide a solution by delivering more consistent, precise, and faster scans, potentially reducing human error and healthcare costs. Effective force control is crucial in robotic ultrasound scanning to ensure consistent image quality and patient safety.
View Article and Find Full Text PDF: EnBloc resections of bone tumors of the spine are very demanding as the target to achieve a tumor-free margin specimen (sometimes impossible due to the extracompartimental tumor extension) is sometimes conflicting with the integrity of neurological functions and spine stability. : The surgical treatment of a huge multi-level chordoma of the thoracic spine with unusual extension is reported. Anteriorly, the tumor widely invaded the mediastinum and displaced the aorta; on the left side, it expanded in the subpleuric region; posteriorly, it was uncommonly distant 13 mm from the posterior wall.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania.
Infections continue to pose significant challenges in dentistry, necessitating the development of innovative solutions that can effectively address these issues. This study focuses on creating coatings made from polymethyl methacrylate (PMMA) enriched with zinc oxide-silver composite nanoparticles, layered to Ti6Al4V-titanium alloy substrates. The application of these materials aims to create a solution for the abutments utilized in complete dental implant systems, representing the area most susceptible to bacterial infections.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!