Objectives: To evaluate the effect of minocycline on the expression of cytokines and growth factors responsible for malignant ascite formation.

Methods: In vitro, cells obtained from malignant ascites were pre-treated with minocycline (0-100 μmol/L) and exposed briefly to hypoxia. In vivo, female nude mice bearing OVCAR-3 tumors were treated orally in drinking water with minocycline for 4 weeks. Plasma, ascites, and tumors were analyzed.

Results: Minocycline blocked hypoxia-induced surge in interleukin-6 (IL-6), its soluble receptor (sIL-6R) and vascular endothelial growth factor (VEGF) levels in concentration-dependent manner. In mice, orally administered minocycline led to dramatic reduction in tumor weight and malignant ascite volume. IL-6, sIL6R and in particular VEGF levels were highly suppressed in plasma, ascite fluid and tumor tissue by minocycline. In addition, tumors from minocycline treated mice expressed profoundly lower levels of phosphorylated extracellular regulated kinases (p-Erk1/2) and p-Akt. Minocycline was also effective at suppressing transforming growth factor beta (TGF-β1) and increasing vascular endothelial cadherin (VE-cadherin) expression thereby providing molecular confirmation for its effects on malignant ascite formation.

Conclusion: Orally administered minocycline is highly effective in suppressing ovarian cancer-induced malignant ascites by targeting cytokines and growth factors essential for tumor growth and malignant ascite formation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygyno.2012.12.031DOI Listing

Publication Analysis

Top Keywords

malignant ascite
16
malignant ascites
12
minocycline
10
cytokines growth
8
growth factors
8
vascular endothelial
8
growth factor
8
vegf levels
8
orally administered
8
administered minocycline
8

Similar Publications

High-grade serous ovarian carcinoma (HGSOC) remains the most common and deadly form of ovarian cancer. However, available cell lines usually fail to appropriately represent its complex molecular and histological features. To overcome this drawback, we established OVAR79, a new cell line derived from the ascitic fluid of a patient with a diagnosis of HGSOC, which adds a unique set of properties to the study of ovarian cancer.

View Article and Find Full Text PDF

Background: There has been limited success of cancer immunotherapies in the treatment of ovarian cancer (OvCa) to date, largely due to the immunosuppressive tumour microenvironment (TME). Tumour-associated macrophages (TAMs) are a major component of both the primary tumour and malignant ascites, promoting tumour growth, angiogenesis, metastasis, chemotherapy resistance and immunosuppression. Differential microRNA (miRNA) profiles have been implicated in the plasticity of TAMs.

View Article and Find Full Text PDF

Background: Disseminated nocardiosis is a rare and potentially fatal disease, with a higher incidence in immunocompromised patients, such as those living with human immunodeficiency virus (HIV) or hematological malignancies, including lymphoma. Information on Nocardia spp. infection in Venezuela is limited.

View Article and Find Full Text PDF

Being the second leading cause of death globally, cancer has been a long-standing and rapidly evolving focus of biomedical research and practice in the world. Recently, there has been growing interest in cyanobacteria. This focus is particularly evident in developing innovative anticancer treatments to reduce reliance on traditional chemotherapy.

View Article and Find Full Text PDF

Introduction: Ovarian cancer is a lethal disease with low survival rates for women diagnosed in advanced stages. Current cancer immunotherapies are not efficient in ovarian cancer, and there is therefore a significant need for novel treatment options. The β-galactoside-binding lectin, Galectin-3, is involved in different immune processes and has been associated with poor outcome in various cancer diagnoses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!