The lateral septum has been extensively implicated in regulating anxiety-related defensive behaviors in the rat. Neuropeptide Y (NPY) contributes to anxiety, likely through activity at the NPY Y1 and/or Y2 receptor binding sites. Although the lateral septum contains the highest density of Y2 receptors in brain, the involvement of this receptor in anxiety-related defensive behaviors is not clear. Thus, the purpose of the current study was to characterize lateral septal Y2 receptor contributions to rats' defensive responses to threat and/or potentially threatening environments. We investigated this by infusing the NPY Y2 agonist NPY13-36 into the lateral septum and testing rats across a battery of animal models of anxiety (Experiment 1). To verify the role of Y2 in mediating the observed effects, rats were pre-infused with the potent and highly selective Y2 antagonist BIIE 0246 prior to infusion with NPY13-36 (Experiment 2). Infusions of NPY13-36 into the lateral septum increased rats' open-arm exploration in the elevated plus-maze test (p<0.01) and decreased the proportion of rats' that buried (p<0.05) as well as their latency to initiate burying in the shock-probe burying test (p<0.01). By contrast, NPY13-36 did not affect either anxiety- or appetite-related responses in the novelty-induced suppression of feeding test (all ps>0.3; Experiment 1). Pre-treatment with the Y2 antagonist BIIE 0246 prevented the anxiolytic-like actions of NPY13-36 in the plus-maze but not in the shock-probe test (Experiment 2). Thus, it appears that the anxiolytic-like actions of lateral septal NPY13-36 are mediated by the Y2 receptor in a test-specific manner.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.physbeh.2012.12.011DOI Listing

Publication Analysis

Top Keywords

lateral septum
16
defensive behaviors
12
lateral septal
8
agonist npy13-36
8
anxiety-related defensive
8
npy13-36 lateral
8
lateral
6
septal infusions
4
infusions neuropeptide
4
receptor
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!