Sound localization along the azimuthal dimension depends on interaural time and level disparities, whereas localization in elevation depends on broadband power spectra resulting from the filtering properties of the head and pinnae. We trained cats with their heads unrestrained, using operant conditioning to indicate the apparent locations of sounds via gaze shift. Targets consisted of broadband (BB), high-pass (HP), or low-pass (LP) noise, tones from 0.5 to 14 kHz, and 1/6 octave narrow-band (NB) noise with center frequencies ranging from 6 to 16 kHz. For each sound type, localization performance was summarized by the slope of the regression relating actual gaze shift to desired gaze shift. Overall localization accuracy for BB noise was comparable in azimuth and in elevation but was markedly better in azimuth than in elevation for sounds with limited spectra. Gaze shifts to targets in azimuth were most accurate to BB, less accurate for HP, LP, and NB sounds, and considerably less accurate for tones. In elevation, cats were most accurate in localizing BB, somewhat less accurate to HP, and less yet to LP noise (although still with slopes ∼0.60), but they localized NB noise much worse and were unable to localize tones. Deterioration of localization as bandwidth narrows is consistent with the hypothesis that spectral information is critical for sound localization in elevation. For NB noise or tones in elevation, unlike humans, most cats did not have unique responses at different frequencies, and some appeared to respond with a "default" location at all frequencies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3602938PMC
http://dx.doi.org/10.1152/jn.00358.2012DOI Listing

Publication Analysis

Top Keywords

gaze shift
12
sound localization
8
localization elevation
8
noise tones
8
azimuth elevation
8
tones elevation
8
localization
7
elevation
6
noise
6
accurate
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!