Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Some filamentous cyanobacteria carry out oxygenic photosynthesis in vegetative cells and nitrogen fixation in specialized cells known as heterocysts. Thylakoid membranes in vegetative cells contain photosystem I (PSI) and PSII, while those in heterocysts contain predominantly PSI. Therefore, the thylakoid membranes change drastically when differentiating from a vegetative cell into a heterocyst. The dynamics of these changes have not been sufficiently characterized in situ. Here, we used time-lapse fluorescence microspectroscopy to analyze cells of Anabaena variabilis under nitrogen deprivation at approximately 295 K. PSII degraded simultaneously with allophycocyanin, which forms the core of the light-harvesting phycobilisome. The other phycobilisome subunits that absorbed shorter wavelengths persisted for a few tens of hours in the heterocysts. The whole-thylakoid average concentration of PSI was similar in heterocysts and nearby vegetative cells. PSI was best quantified by selective excitation at a physiological temperature (approximately 295 K) under 785-nm continuous-wave laser irradiation, and detection of higher energy shifted fluorescence around 730 nm. Polar distribution of thylakoid membranes in the heterocyst was confirmed by PSI-rich fluorescence imaging. The findings and methodology used in this work increased our understanding of how photosynthetic molecular machinery is transformed to adapt to different nutrient environments and provided details of the energetic requirements for diazotrophic growth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3585599 | PMC |
http://dx.doi.org/10.1104/pp.112.206680 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!