Small heat shock proteins (sHsps) play a role in preventing the fatal aggregation of denatured proteins in the presence of stresses. The sHsps exist as monodisperse oligomers in their resting state. Because the hydrophobic N-terminal regions of sHsps are possible interaction sites for denatured proteins, the manner of assembly of the oligomer is critical for the activation and inactivation mechanisms. Here, we report the oligomer architecture of SpHsp16.0 from Schizosaccharomyces pombe determined with X-ray crystallography and small angle X-ray scattering. Both results indicate that eight dimers of SpHsp16.0 form an elongated sphere with 422 symmetry. The monomers show nonequivalence in the interaction with neighboring monomers and conformations of the N- and C-terminal regions. Variants for the N-terminal phenylalanine residues indicate that the oligomer formation ability is highly correlated with chaperone activity. Structural and biophysical results are discussed in terms of their possible relevance to the activation mechanism of SpHsp16.0.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.str.2012.11.015 | DOI Listing |
J Colloid Interface Sci
January 2025
Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210008 China. Electronic address:
Photothermal therapy (PTT) utilizing cyanine dyes (Cy) and nitric oxide (NO) gas therapy via BNN6 have demonstrated significant potential in cancer treatment. However, the rapid clearance of these small molecules from the body limits their accumulation at tumor sites, thereby reducing therapeutic efficacy. To address this, we employed the acid-sensitive nanomaterial ZIF-8 as a carrier to encapsulate Cy and BNN6, creating functionalized BNN6-Cy@ZIF-8 Nanoparticles (B-C@Z NPs) for the targeted delivery and release of Cy and BNN6 at tumor sites.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Department of Plant Breeding, Swedish University of Agricultural Sciences, Box 190, Lomma SE-23422, Sweden.
In this study, the impact of the varying environments, wet-cool (2017), dry-hot (2018), and fluctuating (2019), on two spring wheat genotypes, Diskett and Bumble, grown in field conditions in southern Sweden was studied. From harvested grains, polymeric gluten proteins were fractionated and collected using SE-HPLC and then analyzed with LC-MS/MS. Proteins and peptides identified through searches against the protein sequences of (taxon 4565) from the UniProtKB database showed 7 high molecular weight glutenin subunits (HMW-GS) and 24 low molecular weight glutenin subunits (LMW-GS) with different enrichment levels for both genotypes.
View Article and Find Full Text PDFAnalyst
January 2025
Department of Engineering Design, Indian Institute of Technology Madras, India.
High throughput intracellular delivery of biological macromolecules is crucial for cell engineering, gene expression, therapeutics, diagnostics, and clinical studies; however, most existing techniques are either contact-based or have throughput limitations. Herein, we report a light-activated, contactless, high throughput photoporation method for highly efficient and viable cell transfection of more than a million cells within a minute. We fabricated reduced graphene oxide (rGO) nanoflakes that was mixed with a polydimethylsiloxane (PDMS) nanocomposite thin sheet with an area of 3 cm and a thickness of ∼600 μm.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
Polymer composite materials encounter considerable challenges in sustaining superior tribological properties at high rotational speeds. Inspired by the microstructure of dragonfly wings, a novel thermally stable and ambient pressure curing poly(urea-imide) resin (PURI) with excellent tribological properties has been eco-friendly synthesis using bio-based greener solvents. Furthermore, The PURI composites enhanced with polyether ether ketone (PEEK) and Polytetrafluoroethylene (PTFE) blended fabrics demonstrate excellent mechanical, with tensile strengths exceeding 175 MPa.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China. Electronic address:
Integrating liquid metal (LM) with wood fibers for flexible paper electronics is intriguing yet extremely challenging due to poor mechanical performance. Here, we disclose a hemicellulose trapping strategy to achieve exceptional ultrastrong and tough LM-based paper electronics. Holocellulose nanofibrils (HCNFs) with hemicellulose retention of approximately 20 % are found to effectively entrap nanoscale LM within the fibril network, analogous to spider silk capturing small water droplets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!