The degree of filling of titania nanostructures with a solid hole-conducting material is important for the performance of solid-state dye-sensitized solar cells (ssDSSCs). Different ways to infiltrate the hole-conducting polymer poly(3-hexylthiophene) (P3HT) into titania structures, both granular structures as they are already applied commercially and tailored sponge nanostructures, are investigated. The solar cell performance is compared to the morphology determined with scanning electron microscopy (SEM) and time-of-flight grazing incidence small-angle neutron scattering (TOF-GISANS). The granular titania structure, commonly used for ssDSSCs, shows a large distribution of particle and pore sizes, with porosities in the range from 41 to 67%, including even dense parts without pores. In contrast, the tailored sponge nanostructure has well-defined pore sizes of 25 nm with an all-over porosity of 54%. Filling of the titania structures with P3HT by solution casting results in a mesoscopic P3HT overlayer and consequently a bad solar cell performance, even though a filling ratio of 67% is observed. For the infiltration by repeated spin coating, only 57% pore filling is achieved, whereas filling by soaking in the solvent with subsequent spin coating yields filling as high as 84% in the case of the tailored titania sponge structures. The granular titania structure is filled less completely than the well-defined porous structures. The solar cell performance is increased with an increasing filling ratio for these two ways of infiltration. Therefore, filling by soaking in the solvent with subsequent spin coating is proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am302255cDOI Listing

Publication Analysis

Top Keywords

titania structures
12
solar cell
12
cell performance
12
spin coating
12
solid-state dye-sensitized
8
dye-sensitized solar
8
solar cells
8
filling
8
filling titania
8
structures granular
8

Similar Publications

Glycerol Adsorption on TiO Surfaces: A Systematic Periodic DFT Study.

ChemistryOpen

January 2025

Facultad de Ciencias Básicas, Universidad de Medellín, 050026, Medellín, Colombia.

Conversion of glycerol to added-value products is desirable due to its surplus during biodiesel synthesis. TiO has been the most explored catalyst. We performed a systematic study of glycerol adsorption on anatase (101), anatase (001), and rutile (110) TiO at the Density Functional Theory level.

View Article and Find Full Text PDF

Introduction: Current intestinal models lack the mechanical forces present in the physiological environment, limiting their reliability for nanotoxicology studies. Here, we developed an enhanced Caco-2/HT29-MTX-E12 co-culture model incorporating orbital mechanical stimulation to better replicate intestinal conditions and investigate nanoparticle interactions.

Methods: We established co-cultures under static and dynamic conditions, evaluating their development through multiple approaches including barrier integrity measurements, gene expression analysis, and confocal microscopy.

View Article and Find Full Text PDF

We employed machine learning (ML) techniques combined with potential-dependent photoelectrochemical impedance spectroscopy (pot-PEIS) to gain deeper insights into the charge transport mechanisms of hematite (α-FeO) photoanodes. By the Shapley Additive exPlanations (SHAP) analysis from the ML model constructed from a small data set (dozens of samples) of electrical parameters obtained from pot-PEIS and the PEC performance, we identified the dominant factors influencing the electron transport to the back contact in the bulk and hole transfer to a solution at the hematite/electrolyte interface. The results revealed that shallow defect states significantly enhance electron transport, while deep defect states impede it, and also one of the surface states enhances the hole transfer to the electrolyte solution.

View Article and Find Full Text PDF

Photocatalytic reduction of nitrate to N holds great significance for environmental governance. However, the selectivity of nitrate reduction to N is influenced by sacrificial agents and the kinds of cocatalysts (such as Pt and Ag). The presence of unconsumed sacrificial agents can aggravate environmental pollution, while noble metal-based cocatalysts increase application costs.

View Article and Find Full Text PDF

Bilayer TiO/Mo-BiVO Photoelectrocatalysts for Ibuprofen Degradation.

Materials (Basel)

January 2025

Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, University Campus, 15784 Athens, Greece.

Heterojunction formation between BiVO nanomaterials and benchmark semiconductor photocatalysts has been keenly pursued as a promising approach to improve charge transport and charge separation via interfacial electron transfer for the photoelectrocatalytic degradation of recalcitrant pharmaceutical pollutants. In this work, a heterostructured TiO/Mo-BiVO bilayer photoanode was fabricated by the deposition of a mesoporous TiO overlayer using the benchmark P25 titania catalyst on top of Mo-doped BiVO inverse opal films as the supporting layer, which intrinsically absorbs visible light below 490 nm, while offering improved charge transport. A porous P25/Mo-BiVO bilayer structure was produced from the densification of the inverse opal underlayer after post-thermal annealing, which was evaluated on photocurrent generation in aqueous electrolyte and the photoelectrocatalytic degradation of the refractory anti-inflammatory drug ibuprofen under back-side illumination by visible and UV-Vis light.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!