A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

End-on and side-on π-acid ligand adducts of gold(I): carbonyl, cyanide, isocyanide, and cyclooctyne gold(I) complexes supported by N-heterocyclic carbenes and phosphines. | LitMetric

N-heterocyclic carbene ligand SIDipp (SIDipp = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene) and trimesitylphosphine ligand have been used in the synthesis of gold(I) cyanide, t-butylisocyanide, and cyclooctyne complexes (SIDipp)Au(CN) (3), (Mes(3)P)Au(CN) (4), [(Mes(3)P)(2)Au][Au(CN)(2)] (5), [(SIDipp)Au(CN(t)Bu)][SbF(6)] ([6][SbF(6)]), [(SIDipp)Au(cyclooctyne)][SbF(6)] ([8][SbF(6)]), and [(Mes(3)P)Au(cyclooctyne)][SbF(6)] ([9][SbF(6)]). A detailed computational study has been carried out on these and the related gold(I) carbonyl adducts [(SIDipp)Au(CO)][SbF(6)] ([1][SbF(6)]), [(Mes(3)P)Au(CO)][SbF(6)] ([2][SbF(6)]), and [(Mes(3)P)Au(CN(t)Bu)](+) ([7](+)). X-ray crystal structures of 3, 5, [6][SbF(6)], [8][SbF(6)], and [9][SbF(6)] revealed that they feature linear gold sites. Experimental and computational data show that the changes in π-acid ligand on (SIDipp)Au(+) from CO, CN(-), CN(t)Bu, cyclooctyne as in [1](+), 3, [6](+), and [8](+) did not lead to large changes in the Au-C(carbene) bond distances. A similar phenomenon was also observed in Au-P distance in complexes [2](+), 4, [7](+), and [9](+) bearing trimesitylphosphine. Computational data show that the Au-L bonds of "naked" [Au-L](+) or SIDipp and Mes(3)P supported [Au-L](+) (L = CO, CN(-), CN(t)Bu to cyclooctyne) have higher electrostatic character than covalent character. The Au←L σ-donation and Au→L π-back-donation contribute to the orbital term with the former being the dominant component, but the latter is not negligible. In the Au-CO adducts [1](+)and [2](+), the cationic gold center causes the polarization of the C-O σ and π orbitals toward the carbon end making the coefficients at the two atoms more equal which is mainly responsible for the large blue shift in the CO stretching frequency. The SIDipp and Mes(3)P supported gold(I) complexes of cyanide and isocyanide also exhibit a significant blue shift in υ(CN) compared to that of the free ligands. Calculated results for Au(CO)Cl and Au(CF(3))CO suggest that the experimentally observed blue shift in ν(CO) of these compounds may at least partly be caused by intermolecular forces.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic301869vDOI Listing

Publication Analysis

Top Keywords

blue shift
12
π-acid ligand
8
goldi carbonyl
8
cyanide isocyanide
8
goldi complexes
8
computational data
8
cn- cntbu
8
cntbu cyclooctyne
8
sidipp mes3p
8
mes3p supported
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!