The need for new antibiotics has become pressing in light of the emergence of antibiotic-resistant strains of human pathogens. Yersinia pestis, the causative agent of plague, is a public health threat and also an agent of concern in biodefence. It is a recently emerged clonal derivative of the enteric pathogen Yersinia pseudotuberculosis. Previously, we developed a bioinformatic approach to identify proteins that may be suitable targets for antimicrobial therapy and in particular for the treatment of plague. One such target was cytidine monophosphate (CMP) kinase, which is an essential gene in some organisms. Previously, we had thought CMP kinase was essential for Y. pseudotuberculosis, but by modification of the mutagenesis approach, we report here the production and characterization of a Δcmk mutant. The isogenic mutant had a growth defect relative to the parental strain, and was highly attenuated in mice. We have also elucidated the structure of the CMP kinase to 2.32 Å, and identified three key residues in the active site that are essential for activity of the enzyme. These findings will have implications for the development of novel CMP kinase inhibitors for therapeutic use.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3603445 | PMC |
http://dx.doi.org/10.1098/rsob.120142 | DOI Listing |
J Plant Physiol
November 2024
Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1C5S7, Canada. Electronic address:
Nucleoside mono-, di- and triphosphates (NMP, NDP, and NTP) and their deoxy-counterparts (dNMP, dNDP, dNTP) are involved in energy metabolism and are the building blocks of RNA and DNA, respectively. The production of NTP and dNTP is carried out by several NMP kinases (NMPK) and NDP kinases (NDPK). All NMPKs are fully reversible and use defined Mg-free and Mg-complexed nucleotides in both directions of their reactions, with Mg controlling the ratios of Mg-free and Mg-complexed reactants.
View Article and Find Full Text PDFMol Oral Microbiol
December 2024
Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California, USA.
ACS Omega
April 2024
Scientific Computing Research Unit, University of Cape Town, PD Hahn Building, Rondebosch 7701, South Africa.
Chemical systems glycobiology requires experimental and computational tools to make possible big data analytics benefiting genomics and proteomics. The impediment to tool development is that the nature of glycan construction and mutation is not template driven but rests on cooperative glycosyltransferase (GT) catalytic synthesis. What is needed is the collation of kinetics and inhibition data in a standardized form to make possible analytics of glycan and glycoconjugate synthesis, mechanism extraction, and pattern recognition.
View Article and Find Full Text PDFCurr Cancer Drug Targets
March 2024
NHC Key Laboratory of Carcinogenesis, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
Introduction: UMP-CMP kinase 2 (CMPK2) is involved in mitochondrial DNA synthesis which can be oxidized and released into the cytoplasm in innate immunity. It initiates the assembly of NLRP3 inflammasomes and mediates various pathological processes such as human immunodeficiency virus infection and systemic lupus erythematosus. However the role of CMPK2 in tumor progression and tumor immunity remains unclear.
View Article and Find Full Text PDFJ Med Virol
March 2024
Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, China.
Cytidine/uridine monophosphate kinase 2 (UMP-CMP kinase 2, CMPK2) has been reported as an antiviral interferon-stimulated gene (ISG). We previously observed that the expression of CMPK2 was significantly upregulated after Zika Virus (ZIKV) infection in A549 cells. However, the association and the underlying mechanisms between CMPK2 induction and ZIKV replication remain to be determined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!