Investigating the role of nucleoside transporters in the resistance of colorectal cancer to 5-fluorouracil therapy.

Cancer Chemother Pharmacol

Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.

Published: March 2013

Resistance to 5-fluorouracil (5FU) poses a constant challenge to the management of colorectal cancer (CRC). Consistent efforts were called for to identify molecular markers that can effectively predict patients' response. This study investigated the role of nucleoside transporters, particularly human equilibrative nucleoside transporter 1 (hENT1), in predicting clinical treatment outcome with 5FU-based therapy. Expression of a panel of nucleoside transporters in biopsied tumors from 7 CRC patients was measured by real-time PCR prior to 5FU-based chemotherapy. To provide mechanistic support for the role of hENT1 in 5FU resistance, cell viability of Caco-2 cells was measured, following incubation with varying concentrations of 5FU and a hENT1 inhibitor. Biopsied tumors were further subjected to global metabonomic profiling using gas chromatography/mass spectrometry. High hENT1 levels in tumor tissue correlated with poor clinical response to 5FU. Corroborating with the clinical findings, chemical inhibition of hENT1 in Caco-2 cells resulted in an augmentation of 5FU efficacy. Metabonomic profiling revealed that the pretreatment metabotype associated with non-responders to 5FU therapy was distinct from metabotype of responders (partial least-squares discriminant analysis Q(2) (cumulative) = 0.898, R(2)X = 0.513, R(2)Y = 0.996). This is the first clinical report on the relationships of intratumoral expression of nucleoside transporters and tumor metabotype with response to 5FU among CRC patients. Coupled to the in vitro findings, our preliminary data suggested hENT1 to be a potential codeterminant of clinical response to 5FU.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00280-012-2054-0DOI Listing

Publication Analysis

Top Keywords

nucleoside transporters
16
response 5fu
12
role nucleoside
8
colorectal cancer
8
5fu
8
biopsied tumors
8
crc patients
8
caco-2 cells
8
metabonomic profiling
8
clinical response
8

Similar Publications

Podocytes express large-conductance Ca-activated K channels (BK channels) and at least two different pore-forming KCa1.1 subunit C-terminal splice variants, known as VEDEC and EMVYR, along with auxiliary β and γ subunits. Podocyte KCa1.

View Article and Find Full Text PDF

Xuefu Zhuyu Decoction Improves Blood-Brain Barrier Integrity in Acute Traumatic Brain Injury Rats via Regulating Adenosine.

Chin J Integr Med

January 2025

Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.

Objective: To explore the neuroprotective effects of Xuefu Zhuyu Decoction (XFZYD) based on in vivo and metabolomics experiments.

Methods: Traumatic brain injury (TBI) was induced via a controlled cortical impact (CCI) method. Thirty rats were randomly divided into 3 groups (10 for each): sham, CCI and XFZYD groups (9 g/kg).

View Article and Find Full Text PDF

Nucleoside reverse transcriptase inhibitors (NRTIs) are the backbone of highly active antiretroviral therapy (HAART)-the current standard of care for treating human immunodeficiency virus (HIV) infection. Despite their efficacy, NRTIs cause numerous treatment-limiting adverse effects, including a distinct peripheral neuropathy, called antiretroviral toxic neuropathy (ATN). ATN primarily affects the extremities with shock-like tingling pain, a pins-and-needles prickling sensation, and numbness.

View Article and Find Full Text PDF

Ticagrelor, a reversible platelet P2Y receptor antagonist, exerts various pleiotropic actions, some of which are at least partially mediated through adenosine. We studied the ticagrelor and adenosine effect on the angiogenic properties of progenitor CD34-derived endothelial colony-forming cells (ECFCs). Angiogenesis studies were performed in vitro using capillary-like tube formation and spheroid-based angiogenesis assays.

View Article and Find Full Text PDF

Epitranscriptomic modifications on RNA play critical roles in stability, processing, and function, partly by influencing interactions with RNA-binding proteins and receptors. The role of post-transcriptional RNA modifications on cell-free non-coding small RNA (sRNA) remains poorly understood in disease contexts. High-density lipoproteins (HDL), which transport sRNAs, can lose their beneficial properties in atherosclerosis cardiovascular disease (ASCVD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!