The Hippo kinase promotes Scalloped cytoplasmic localization independently of Warts in a CRM1/Exportin1-dependent manner in Drosophila.

FASEB J

Université Paris Diderot, Sorbonne Paris Cité, Molecular Oncology Team, Institut Jacques Monod, Unité Mixte de Recherche 7592, Centre National de Recherche Scientifique (CNRS), Paris, France.

Published: April 2013

Scalloped (SD) is a transcription factor characterized by a TEA/ATTS DNA binding domain. To activate transcription, SD must interact with its coactivators, including Yorkie (YKI) or Vestigial (VG). YKI is the downstream effector of the Hippo signaling pathway that plays a key role in the control of tissue growth. The core components of this pathway are two kinases, Hippo (HPO) and Warts (WTS), which negatively regulate the activity of the SD/YKI complex, retaining YKI in the cytoplasm. We previously showed that HPO kinase can also reduce SD/VG transcriptional activity in Drosophila S2 cells. We further investigated the relationship between the SD/VG complex and the Hippo pathway. We show here that HPO overexpression suppresses overgrowth induced by SD/VG in vivo during Drosophila development. Using S2 cells, we show that HPO promotes the translocation of SD to the cytoplasm in a CRM1-dependent manner, thereby inhibiting the induction of SD/VG target genes. Using RNAi-mediated depletion of yki and a mutant SD protein unable to interact with YKI, we demonstrate that HPO regulates SD localization independently of YKI. This function requires HPO kinase activity, yet surprisingly, not its downstream effector kinase WTS. Taken together, these observations reveal a new and unexpected role of HPO kinase in the regulation of a transcription factor independently of YKI.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.12-216424DOI Listing

Publication Analysis

Top Keywords

hpo kinase
12
localization independently
8
transcription factor
8
downstream effector
8
independently yki
8
yki
7
hpo
7
hippo
4
hippo kinase
4
kinase promotes
4

Similar Publications

Aims: This study aims to identify and evaluate promising therapeutic proteins and compounds for breast cancer treatment through a comprehensive database search and molecular docking analysis.

Background: Breast cancer (BC), primarily originating from the terminal ductal-lobular unit of the breast, is the most prevalent form of cancer globally. In 2020, an estimated 2.

View Article and Find Full Text PDF

A feedback loop between Paxillin and Yorkie sustains Drosophila intestinal homeostasis and regeneration.

Nat Commun

January 2025

The Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, China.

Balanced self-renewal and differentiation of stem cells are crucial for maintaining tissue homeostasis, but the underlying mechanisms of this process remain poorly understood. Here, from an RNA interference (RNAi) screen in adult Drosophila intestinal stem cells (ISCs), we identify a factor, Pax, which is orthologous to mammalian PXN, coordinates the proliferation and differentiation of ISCs during both normal homeostasis and injury-induced midgut regeneration in Drosophila. Loss of Pax promotes ISC proliferation while suppressing its differentiation into absorptive enterocytes (ECs).

View Article and Find Full Text PDF

Nuclear receptor E75/NR1D2 promotes tumor malignant transformation by integrating Hippo and Notch pathways.

EMBO J

December 2024

Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China.

Hormone therapy resistance and the ensuing aggressive tumor progression present a significant clinical challenge. However, the mechanisms underlying the induction of tumor malignancy upon inhibition of steroid hormone signaling remain poorly understood. Here, we demonstrate that Drosophila malignant epithelial tumors show a similar reduction in ecdysone signaling, the main steroid hormone pathway.

View Article and Find Full Text PDF

SUMOylation of Warts kinase promotes neural stem cell reactivation.

Nat Commun

October 2024

Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore.

A delicate balance between neural stem cell (NSC) quiescence and proliferation is important for adult neurogenesis and homeostasis. Small ubiquitin-related modifier (SUMO)-dependent post-translational modifications cause rapid and reversible changes in protein functions. However, the role of the SUMO pathway during NSC reactivation and brain development is not established.

View Article and Find Full Text PDF

Blockade of Crk eliminates Yki/YAP-activated tumors via JNK-mediated apoptosis in Drosophila.

Commun Biol

September 2024

Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, 46-29, Yoshida-shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan.

Selective elimination of cancer cells without causing deleterious effects on normal cells is an ideal anti-cancer strategy. Here, using Drosophila cancer model, we performed an in vivo RNAi screen for anti-cancer targets that selectively eliminate tumors without affecting normal tissue growth. In Drosophila imaginal epithelium, clones of cells expressing oncogenic Ras with simultaneous mutations in the cell polarity gene scribble (Ras/scrib) develop into malignant tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!