The primary objective of this study is to functionally characterize and provide molecular evidence of large neutral amino acid transporter (LAT1) in human derived prostate cancer cells (PC-3). We carried out the uptake of [3H]-tyrosine to assess the functional activity of LAT1. Reverse transcription-polymerase chain reaction (RT-PCR) analysis is carried out to confirm the molecular expression of LAT1. [3H]-tyrosine uptake is found to be time dependent and linear up to 60 min. The uptake process does not exhibit any dependence on sodium ions, pH and energy. However, it is temperature dependent and found maximal at physiological temperature. The uptake of [3H]-tyrosine demonstrates saturable kinetics with K(m) and V(max) values of 34 ± 3 μM and 0.70 ± 0.02 nanomoles/min/mg protein, respectively. It is strongly inhibited by large neutral (phenylalanine, tryptophan, leucine, isoleucine) and small neutral (alanine, serine, cysteine) but not by basic (lysine and arginine) and acidic (aspartic and glutamic acid) amino acids. Isoleucine-quinidine (Ile-quinidine) prodrug generates a significant inhibitory effect on [3H]-tyrosine uptake suggesting that it is recognized by LAT1. RT-PCR analysis provided a product band at 658 and 840 bp, specific to LAT1 and LAT2, respectively. For the first time, this study demonstrates that LAT1, primarily responsible for the uptake of large neutral amino acids, is functionally active in PC-3 cells. Significant increase in the uptake generated by Ile-quinidine relative to quinidine suggests that LAT1 can be utilized for enhancing the cellular permeation of poor cell permeable anticancer drugs. Furthermore, this cell line can be utilized as an excellent in vitro model for studying the interaction of large neutral amino acid conjugated drugs with LAT1 transporter.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2012.12.029DOI Listing

Publication Analysis

Top Keywords

large neutral
20
neutral amino
16
amino acid
12
lat1
9
molecular expression
8
acid transporter
8
transporter lat1
8
lat1 human
8
prostate cancer
8
cancer cells
8

Similar Publications

Background: There has been a rise in the popularity of ChatGPT and other chat-based artificial intelligence (AI) apps in medical education. Despite data being available from other parts of the world, there is a significant lack of information on this topic in medical education and research, particularly in Saudi Arabia.

Objective: The primary objective of the study was to examine the familiarity, usage patterns, and attitudes of Alfaisal University medical students toward ChatGPT and other chat-based AI apps in medical education.

View Article and Find Full Text PDF

The expansion of aquaculture areas has encroached upon vast areas of coastal wetlands and introduced excessive nitrogen inputs, disrupting microbial communities and contributing to various environmental issues. However, investigations on how aquaculture affects microbial communities and nitrogen metabolism mechanisms in coastal tidal flats remain scarce. Hence, we explored the composition, diversity, and assembly processes of nitrogen-cycling (N-cycling) microbial communities in tidal flats in Jiangsu using metagenomic assembly methods.

View Article and Find Full Text PDF

Patient expectations have been shown to influence postoperative outcomes across surgical specialties. However, the impact of expectations in breast reconstruction is not well understood. The purpose of this project is to perform the first large-scale analysis and classification of BREAST-Q Expectations responses in patients undergoing implant-based reconstruction.

View Article and Find Full Text PDF

Holographic light potentials generated by phase-modulating liquid-crystal spatial light modulators (SLMs) are widely used in quantum technology applications. Accurate calibration of the wavefront and intensity profile of the laser beam at the SLM display is key to the high fidelity of holographic potentials. Here, we present a new calibration technique that is faster than previous methods while maintaining the same level of accuracy.

View Article and Find Full Text PDF

High-rate quantum error correcting (QEC) codes with moderate overheads in qubit number and control complexity are highly desirable for achieving fault-tolerant quantum computing. Recently, quantum error correction has experienced significant progress both in code development and experimental realizations, with neutral atom qubit architecture rapidly establishing itself as a leading platform in the field. Scalable quantum computing will require processing with QEC codes that have low qubit overhead and large error suppression, and while such codes do exist, they involve a degree of non-locality that has yet to be integrated into experimental platforms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!