A novel strategy of mesenchymal stem cells delivery in the uterus of mares with endometrosis.

Theriogenology

Laboratório de Genética, Instituto Butantan, São Paulo, São Paulo, Brazil.

Published: March 2013

Mesenchymal stem cells (MSCs), because of their immunomodulation and trophic activities, in addition to their capacity to regenerate damaged tissues, have potential for treatment of many diseases. The success of stem cell therapies depends, in part, on the method of cell delivery, which should provide wide cell distribution and homing in to injured sites. The objective of the present study was to developing a novel strategy for delivery of MSCs into the uterus of mares with endometrosis (degenerative alteration of uterine glands and surrounding stroma). Endometrosis was confirmed in all mares (N = 6) used in this study. To trace multipotent equine adipose tissue-derived MSCs (eAT-MSCs) in endometrial tissue, before transplantation, cells were stained with a fluorescent dye. During a synchronized estrus, the eAT-MSCs (2 × 10(7) diluted in 20 mL of sodium chloride 0.9%) were inoculated into uterus using a simple technique, similar to artificial insemination (AI) in mares. At 7 and 21 days after transplantation, homing of fluorescently labeled eAT-MSCs was observed by confocal microscopy of uterine biopsies collected from the uterine body and in both uterine horns, including glandular and periglandular spaces, in three of four treated mares. Herein, we propose a new method of MSCs delivery in uterus of mares with endometrosis, which was minimally invasive and technically simple.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.theriogenology.2012.11.030DOI Listing

Publication Analysis

Top Keywords

uterus mares
12
mares endometrosis
12
novel strategy
8
mesenchymal stem
8
stem cells
8
delivery uterus
8
mares
6
strategy mesenchymal
4
delivery
4
cells delivery
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!