AI Article Synopsis

  • Lyotropic cholesteric liquid crystalline phases were created by mixing potassium laurate, potassium sulfate, alcohol, and water with brucine.
  • The study focused on alcohols with varying chain lengths (n = 8 to 16) to observe phase transitions using polarizing optical microscopy.
  • Alcohols with chain lengths of 9 to 12 displayed three distinct cholesteric phases while the shortest and longest alcohols showed a first-order phase transition, highlighting the impact of alcohol nanosegregation in the micelle structure.

Article Abstract

Lyotropic cholesteric liquid crystalline phases were prepared by doping the quaternary mixture of potassium laurate (KL)/potassium sulfate (K(2)SO(4))/alcohol (n-OH)/water with the chiral agent brucine. Different long-chain alcohols whose alkyl chains (n) vary from 8 (1-octanol) to 16 (1-hexadecanol) were used. The cholesteric uniaxial to cholesteric biaxial phase transitions were investigated by measuring the birefringences via polarizing optical microscopy, and the phase diagram was constructed as a function of the alkyl chain length of the alcohols. Alcohols with 9 ≤ n ≤ 12 presented the three cholesteric phases (cholesteric discotic-Ch(D), cholesteric biaxial-Ch(B), and cholesteric calamitic-Ch(C)). The Ch(D)-to-Ch(B) transition was shown to be continuous, with a bare correlation length bigger than the typical micellar dimensions. Mixtures with n = 8 and n = 13 showed a first-order phase transition between the Ch(D) and the Ch(C) phases, without the presence of the Ch(B) phase in between. These results are interpreted in terms of the nanosegregation of the alcohol molecules in the micelles with respect to the main amphiphiles molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp310981dDOI Listing

Publication Analysis

Top Keywords

cholesteric
9
alkyl chain
8
chain length
8
length alcohols
8
cholesteric uniaxial
8
uniaxial cholesteric
8
cholesteric biaxial
8
biaxial phase
8
phase transitions
8
first-order phase
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!