Secretome analyses of Aβ(1-42) stimulated hippocampal astrocytes reveal that CXCL10 is involved in astrocyte migration.

J Proteome Res

National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, P. R. China.

Published: February 2013

Amyloid-beta (Aβ) aggregation plays an important role in the development of Alzheimer's disease (AD). In the AD brain, amyloid plaques are surrounded by reactive astrocytes, and many essential functions of astrocytes have been reported to be mediated by protein secretion. However, the roles of activated astrocytes in AD progression are under intense debate. To provide an in-depth view of the secretomes of activated astrocytes, we present in this study a quantitative profile of rat hippocampal astrocyte secretomes at multiple time points after both brief and sustained Aβ(1-42) stimulation. Using SILAC labeling and LC-MS/MS analyses, we identified 19 up-regulated secreted proteins after Aβ(1-42) treatment. These differentially expressed proteins have been suggested to be involved in key aspects of biological processes, such as cell recruitment, Aβ clearance, and regulation of neurogenesis. Particularly, we validated the role played by CXCL10 in promoting astrocyte aggregation around amyloid plagues through in vitro cell migration analysis. This research provides global, quantitative profiling of astrocyte secretomes produced on Aβ stimulation and hence provides a detailed molecular basis for the relationship between amyloid plaques and astrocyte aggregation; the findings thus have important implications for further investigations into AD development and therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/pr300895rDOI Listing

Publication Analysis

Top Keywords

amyloid plaques
8
activated astrocytes
8
astrocyte secretomes
8
astrocyte aggregation
8
astrocytes
5
astrocyte
5
secretome analyses
4
analyses aβ1-42
4
aβ1-42 stimulated
4
stimulated hippocampal
4

Similar Publications

Down syndrome, resulting from trisomy of human chromosome 21, is a common form of chromosomal disorder that results in intellectual disability and altered risk of several medical conditions. Individuals with Down syndrome have a greatly increased risk of Alzheimer's disease (DSAD), due to the presence of the APP gene on chromosome 21 that encodes the amyloid-β precursor protein (APP). APP can be processed to generate amyloid-β, which accumulates in plaques in the brains of people who have Alzheimer's disease and is the upstream trigger of disease.

View Article and Find Full Text PDF

Cerebral Microbleeds and Amyloid Pathology Estimates From the Amyloid Biomarker Study.

JAMA Netw Open

January 2025

Alzheimer Center Limburg, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.

Importance: Baseline cerebral microbleeds (CMBs) and APOE ε4 allele copy number are important risk factors for amyloid-related imaging abnormalities in patients with Alzheimer disease (AD) receiving therapies to lower amyloid-β plaque levels.

Objective: To provide prevalence estimates of any, no more than 4, or fewer than 2 CMBs in association with amyloid status, APOE ε4 copy number, and age.

Design, Setting, And Participants: This cross-sectional study used data included in the Amyloid Biomarker Study data pooling initiative (January 1, 2012, to the present [data collection is ongoing]).

View Article and Find Full Text PDF

A criterion characterizing the combined neurotoxicity of amyloid beta and tau oligomers is suggested. A mathematical model that makes it possible to calculate a value of this criterion during senile plaque and NFT formation is proposed. Computations show that for physiologically relevant parameter values, the value of the criterion increases approximately linearly as time increases.

View Article and Find Full Text PDF

Unlabelled: Despite some skepticism regarding the amyloid hypothesis, there is growing evidence that clearing amyloid by targeting specific species of amyloid (plaque, oligomers, fibrils, and protofibrils) for removal has therapeutic benefits. Specifically, there is growing evidence that, in mild cognitive impairment and mild dementia due to Alzheimer's disease (AD), robust and aggressive removal of amyloid can slow cognitive decline as measured by global instruments, composite measures, and cognitive testing. Furthermore, clinical efficacy signals coupled with clear biomarker changes provide the first evidence of disease modification.

View Article and Find Full Text PDF

Charge Modification of Lysine Mitigates Amyloid-β Aggregation.

Chembiochem

January 2025

Yonsei University, Deparment of Pharmacy, 85 Songdogwahak-ro, Yeonsu-gu, Yonsei University, Veritas Hall D411, 21983, Incheon, KOREA, REPUBLIC OF.

Alzheimer's disease (AD) is a progressive neurodegenerative condition characterized by the deposition of amyloid-β (Aβ) peptides, which aggregate into toxic structures such as oligomers, fibrils, and plaques. The presence of these Aβ aggregates in the brain plays a crucial role in the pathophysiology, leading to synaptic dysfunction and cognitive impairment. Understanding how physiological factors affect Aβ aggregation is essential, and therefore, exploring their influence in vitro will likely provide insights into their role in AD pathology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!