A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhancement of antiviral activity of human alpha-defensin 5 against herpes simplex virus 2 by arginine mutagenesis at adaptive evolution sites. | LitMetric

Enhancement of antiviral activity of human alpha-defensin 5 against herpes simplex virus 2 by arginine mutagenesis at adaptive evolution sites.

J Virol

Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China.

Published: March 2013

Herpes simplex virus 2 (HSV-2) infection is still one of the common causes of sexually transmitted diseases worldwide. The prevalence of HSV strains resistant to traditional nucleoside antiviral agents has led to the development of novel antiviral drugs. Human alpha-defensin 5 (HD5), a kind of endogenous antimicrobial peptide expressed in the epithelia of the small intestine and urogenital tract, displays natural antiviral activity. Based on arginine-rich features and adaptive evolution characteristics of vertebrate defensins, we conducted a screen for HD5 derivatives with enhanced anti-HSV-2 activity by a single arginine substitution at the adaptive evolution sites. Cell protection assay and temporal antiviral studies showed that HD5 and its mutants displayed affirmatory but differential anti-HSV-2 effects in vitro by inhibiting viral adhesion and entry. Inspiringly, the E21R-HD5 mutant had significantly higher antiviral activity than natural HD5, which is possibly attributed to the stronger binding affinity of the E21R-HD5 mutant with HSV-2 capsid protein gD, indicating that E21R mutation can increase the anti-HSV-2 potency of HD5. In a mouse model of lethal HSV-2 infection, prophylactic and/or therapeutic treatment with E21R-HD5 via intravaginal instillation remarkably alleviated the symptoms and delayed disease progress and resulted in about a 1.5-fold-higher survival rate than in the HD5 group. Furthermore, the E21R variant exhibited a 2-fold-higher antiviral potency against HIV-1 over parental HD5 in vitro. This study demonstrates that arginine mutagenesis at appropriate evolution sites may significantly enhance the antiviral activity of HD5, which also paves a facile way to search for potent antiviral drugs based on natural antimicrobial peptides.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3571410PMC
http://dx.doi.org/10.1128/JVI.02209-12DOI Listing

Publication Analysis

Top Keywords

antiviral activity
16
adaptive evolution
12
evolution sites
12
human alpha-defensin
8
herpes simplex
8
simplex virus
8
arginine mutagenesis
8
hsv-2 infection
8
antiviral
8
antiviral drugs
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!