The role of purinergic signaling in depressive disorders.

Neuropsychopharmacol Hung

Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences IEM HAS, H-1083 Budapest, Hungary.

Published: December 2012

The purinergic signaling system consists of transporters, enzymes and receptors responsible for the synthesis, release, action and extracellular inactivation of adenosine 5'-triphosphate (ATP) and its extracellular breakdown product adenosine. The actions of ATP are mediated ionotropic P2X and metabotropic P2Y receptor subfamilies, whilst the actions of adenosine are mediated by P1 adenosine receptors. Purinergic signaling pathways are widely expressed in the central nervous system (CNS) and participate in its normal and pathological functions. Among P2X receptors, the P2X7 receptor (P2rx7) has received considerable interest in both basic and clinical neuropsychiatric research because of its profound effects in animal CNS pathology and its potential involvement as a susceptibility gene in mood disorders. Although genetic findings were not always consistently replicated, several studies demonstrated that single nucleotide polymorphisms (SNPs) in the human P2X7 gene (P2RX7) show significant association with major depressive disorder and bipolar disorder. Animal studies revealed that the genetic knock-down or pharmacological antagonism leads to reduced depressive-like behavior, attenuated response in mania-model and alterations in stress reactivity. A potential mechanism of P2rx7 activation on mood related behavior is increased glutamate release, activation of extrasynaptic NMDA receptors and subsequent enduring changes in neuroplasticity. In addition, dysregulation of monoaminergic transmission and HPA axis reactivity could also contribute to the observed changes in behavior. Besides P2rx7, the inhibition of adenosine A1 and A2A receptors also mediate antidepressant-like effects in animal experiments. In conclusion, despite contradictions between existing data, these findings point to the therapeutic potential of the purinergic signaling system in mood disorders.

Download full-text PDF

Source

Publication Analysis

Top Keywords

purinergic signaling
16
signaling system
8
effects animal
8
mood disorders
8
receptors
5
adenosine
5
role purinergic
4
signaling
4
signaling depressive
4
depressive disorders
4

Similar Publications

Attributes novel drug candidate: Constitutive GPCR signal bias mediated by purinergic receptors.

Pharmacol Ther

January 2025

School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.

G protein-coupled receptors (GPCRs) can transmit signals via G protein-dependent or independent pathways due to the conformational changes of receptors and ligands, which is called biased signaling. This concept posits that ligands can selectively activate a specific signaling pathway after receptor activation, facilitating downstream signaling along a preferred pathway. Biased agonism enables the development of ligands that prioritize therapeutic signaling pathways while mitigating on-target undesired effects.

View Article and Find Full Text PDF

Duhuo Jisheng Mixture attenuates neuropathic pain by inhibiting S1PR1/P2YR pathway after Chronic Constriction Injury in mice.

Phytomedicine

January 2025

Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Changle West Street 15, Xi'an, Shaanxi, 710032, China. Electronic address:

Background: The pathogenesis of neuropathic pain is complex and lacks effective clinical treatment strategies. Medical plants and herbal extracts from traditional Chinese medicine with multi-target comprehensive effects have attracted great attention from scientists.

Purpose: To investigate the pharmacological active components and mechanism underlying the anti-neuralgia effect of classic analgesic formulas Duhuo Jisheng Mixture (DJM).

View Article and Find Full Text PDF

Neutrophils and purinergic signaling: partners in the crime against Leishmania parasites?

Biochimie

January 2025

Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; Bio-Manguinhos, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Rio de Janeiro, Brazil. Electronic address:

The parasite of the genus Leishmania is the causative agent of diseases that affect humans called leishmaniasis. These diseases affect millions of people worldwide and the currently existing drugs are either very toxic or the parasites acquire resistance. Therefore, new elimination mechanisms need to be elucidated so that new therapeutic strategies can be developed.

View Article and Find Full Text PDF

Intra-abdominal sepsis is a life-threatening complex syndrome caused by microbes in the gut microbiota invading the peritoneal cavity. It is one of the major complications of intra-abdominal surgery. To date, only supportive therapies are available.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!