Novel nanotechnologies have allowed great improvements in the syn-thesis of catalysts with well-controlled size, shape, and surface properties. Transition metal nanostructures with specific sizes and shapes, for instance, have shown great promise as catalysts with high selectivities and relative ease of recycling. Researchers have already demonstrated new selective catalysis with solution-dispersed or supported-metal nanocatalysts, in some cases applied to new types of reactions. Several challenges remain, however, particularly in improving the structural stability of the catalytic active phase. Core-shell nanostructures are nanoparticles encapsulated and protected by an outer shell that isolates the nanoparticles and prevents their migration and coalescence during the catalytic reactions. The synthesis and characterization of effective core-shell catalysts has been at the center of our research efforts and is the focus of this Account. Efficient core-shell catalysts require porous shells that allow free access of chemical species from the outside to the surface of nanocatalysts. For this purpose, we have developed a surface-protected etching process to prepare mesoporous silica and titania shells with controllable porosity. In certain cases, we can tune catalytic reaction rates by adjusting the porosity of the outer shell. We also designed and successfully applied a silica-protected calcination method to prepare crystalline shells with high surface area, using anatase titania as a model system. We achieved a high degree of control over the crystallinity and porosity of the anatase shells, allowing for the systematic optimization of their photocatalytic activity. Core-shell nanostructures also provide a great opportunity for controlling the interaction among the different components in ways that might boost structural stability or catalytic activity. For example, we fabricated a SiO₂/Au/N-doped TiO₂ core-shell photocatalyst with a sandwich structure that showed excellent catalytic activity for the oxidation of organic compounds under UV, visible, and direct sunlight. The enhanced photocatalytic efficiency of this nanostructure resulted from an added interfacial nonmetal doping, which improved visible light absorption, and from plasmonic metal decoration that enhanced light harvesting and charge separation. In addition to our synthetic efforts, we have developed ways to evaluate the accessibility of reactants to the metal cores and to characterize the catalytic properties of the core-shell samples we have synthesized. We have adapted infrared absorption spectroscopy and titration experiments using carbon monoxide and other molecules as probes to study adsorption on the surface of metal cores in metal oxide-shell structures in situ in both gas and liquid phases. In particular, the experiments in solution have provided insights into the ease of diffusion of molecules of different sizes in and out of the shells in these catalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ar300230s | DOI Listing |
Chem Biol Drug Des
January 2025
Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Pilani, Rajasthan, India.
A set of coumarin-3-carboxamide analogues were designed, synthesized, and evaluated for their ability to impede pancreatic lipase (PL) activity. Out of all the analogues, 5dh and 5de demonstrated promising inhibitory activity against PL, as indicated by their respective IC values of 9.20 and 11.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Thessaly, Mechanical Engineering, Leoforos Athinon, Pedion Areos, 383 34, Volos, GREECE.
To accelerate the water dissociation in the Volmer step and alleviate the destruction of bubbles to the physical structure of catalysts during the alkaline hydrogen evolution, an integrated electrode of cobalt oxide and cobalt-molybdenum oxide grown on Ni foam, named CoO-Co2Mo3O8, is designed. This integrated electrode enhances the catalyst-substrate interaction confirmed by a micro-indentation tester, and thus hinders the destruction of the physical structure of catalysts caused by bubbles. Electrochemical testing shows the occurrence of a surface reconstruction of the integrated electrode, and CoO is transformed into Co(OH)2, denoted as Co(OH)2-Co2Mo3O8.
View Article and Find Full Text PDFProtein Sci
February 2025
Cell Physiology and Molecular Biophysics Department, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.
Purifying membrane proteins has been the limiting step for studying their structure and function. The challenges of the process include the low expression levels in heterologous systems and the requirement for their biochemical stabilization in solution. The human voltage-gated proton channel (hH1) is a good example of that: the published protocols to express and purify hH1 produce low protein quantities at high costs, which is an issue for systematically characterizing its structure and function.
View Article and Find Full Text PDFProtein Sci
February 2025
Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
Polymyxins are last-resort antimicrobial peptides administered clinically against multi-drug resistant bacteria, specifically in the case of Gram-negative species. However, an increasing number of these pathogens employ a defense strategy that involves a relay of enzymes encoded by the pmrE (ugd) loci and the arnBCDTEF operon. The pathway modifies the lipid-A component of the outer membrane (OM) lipopolysaccharide (LPS) by adding a 4-amino-4-deoxy-l-arabinose (L-Ara4N) headgroup, which renders polymyxins ineffective.
View Article and Find Full Text PDFEur J Med Res
January 2025
Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
Background: Histone H2B is highly expressed in many types of cancers and is involved in cancer development. H2B clustered histone 9 (H2BC9), a member of the H2B family, plays critical roles in gene expression regulation, chromosome structure, DNA repair stability, and cell cycle regulation. However, the diagnostic and prognostic value of H2BC9 in head and neck squamous cell carcinoma (HNSCC) remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!