Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The aim of this study was to propose an improved method for accurate dialysis dose evaluation and extrapolation by means of Kt/ V from online UV-absorbance measurements for real time and continuous treatment monitoring. The study included a total of 24 treatments from ten uremic patients, seven of whom were male and three females. All patients were on chronic thrice-weekly hemodialysis therapy. The study included both stable and unstable treatments. A known signal processing algorithm, Levenberg-Marquardt, and the newly developed SMART were utilized for the removal of disturbances not relevant for dialysis dose evaluation. Finally, the results were compared with the Kt/ V values based on the blood samples. The new data processing algorithm, SMART, removes disturbances, helps estimate the online Kt/ V with significant precision increase and without any time delay, and more effectively predicts the end Kt/ V for the treatment than the known algorithms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBME.2012.2234458 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!