Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Au/CeO(2) catalysts are highly active for low-temperature CO oxidation and water-gas shift reaction, but they deactivate rapidly because of sintering of gold nanoparticles, linked to the collapse or restructuring of the gold-ceria interfacial perimeters. To date, a detailed atomic-level insight into the restructuring of the active gold-ceria interfaces is still lacking. Here, we report that gold particles of 2-4 nm size, strongly anchored onto rod-shaped CeO(2), are not only highly active but also distinctively stable under realistic reaction conditions. Environmental transmission electron microscopy analyses identified that the gold nanoparticles, in response to alternating oxidizing and reducing atmospheres, changed their shapes but did not sinter at temperatures up to 573 K. This finding offers a new strategy to stabilize gold nanoparticles on ceria by engineering the gold-ceria interfacial structure, which could be extended to other oxide-supported metal nanocatalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja310341j | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!