Stochastic modeling is essential for an accurate description of the biochemical network dynamics at the level of a single cell. Biochemically reacting systems often evolve on multiple time-scales, thus their stochastic mathematical models manifest stiffness. Stochastic models which, in addition, are stiff and computationally very challenging, therefore the need for developing effective and accurate numerical methods for approximating their solution. An important stochastic model of well-stirred biochemical systems is the chemical Langevin Equation. The chemical Langevin equation is a system of stochastic differential equation with multidimensional non-commutative noise. This model is valid in the regime of large molecular populations, far from the thermodynamic limit. In this paper, we propose a variable time-stepping strategy for the numerical solution of a general chemical Langevin equation, which applies for any level of randomness in the system. Our variable stepsize method allows arbitrary values of the time-step. Numerical results on several models arising in applications show significant improvement in accuracy and efficiency of the proposed adaptive scheme over the existing methods, the strategies based on halving/doubling of the stepsize and the fixed step-size ones.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4771660 | DOI Listing |
Eur J Nucl Med Mol Imaging
January 2025
Center for Radiopharmaceutical Sciences, PSI Center for Life Sciences, Villigen-PSI, 5232, Switzerland.
Purpose: Terbium-149 is a short-lived α-particle emitter, potentially useful for tumor-targeted therapy. The aim of this study was to investigate terbium-149 in combination with the somatostatin receptor (SSTR) agonist DOTATATE and the SSTR antagonist DOTA-LM3. The radiopeptides were evaluated to compare their therapeutic efficacy in vitro and in vivo.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
L'Oréal Research and Innovation, 1 avenue Eugène Schueller, 93600 Aulnay-sous-Bois, France.
A comprehensive understanding of chemical interactions at the surface of hair represents an important area of research within the cosmetic industry and is essential to obtain new products that exhibit both performance and sustainability. This paper aims at contributing to this research by applying a combination of surface techniques (neutron reflectometry, quartz-crystal microbalance and atomic force microscopy) to study adsorption of surface active ingredients onto hair-mimetic surfaces. The surface of hair is not homogeneous due to chemical and physical damage, and this work focuses on partly damaged hair models, in which both hydrophobic and charged moieties are present.
View Article and Find Full Text PDFJACS Au
November 2024
Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal.
J Phys Chem A
December 2024
Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern 0315 Oslo, Norway.
Reactions between protonated hydrogen peroxide and benzene (and benzene-) have been studied in the gas phase using an FT-ICR mass spectrometer. Four competing paths for the bimolecular system were identified, namely, proton transfer, hydride abstraction, dissociative single-electron transfer, and an electrophilic addition of HO to give the Wheland intermediate [CH, OH] followed by a subsequent elimination of water. The three latter pathways correspond to three different ways to oxidize benzene.
View Article and Find Full Text PDFMacromol Rapid Commun
November 2024
Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS, Le Mans Université, Le Mans, 72085 Cedex 9, France.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!