Computational techniques see widespread use in pharmaceutical drug discovery, but typically prove unreliable in predicting trends in protein-ligand binding. Alchemical free energy calculations seek to change that by providing rigorous binding free energies from molecular simulations. Given adequate sampling and an accurate enough force field, these techniques yield accurate free energy estimates. Recent innovations in alchemical techniques have sparked a resurgence of interest in these calculations. Still, many obstacles stand in the way of their routine application in a drug discovery context, including the one we focus on here, sampling. Sampling of binding modes poses a particular challenge as binding modes are often separated by large energy barriers, leading to slow transitions. Binding modes are difficult to predict, and in some cases multiple binding modes may contribute to binding. In view of these hurdles, we present a framework for dealing carefully with uncertainty in binding mode or conformation in the context of free energy calculations. With careful sampling, free energy techniques show considerable promise for aiding drug discovery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3537745 | PMC |
http://dx.doi.org/10.1063/1.4769292 | DOI Listing |
Acc Chem Res
January 2025
Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtzstrasse 11, 89081 Ulm, Germany.
ConspectusLithium-ion batteries (LIBs) based on graphite anodes are a widely used state-of-the-art battery technology, but their energy density is approaching theoretical limits, prompting interest in lithium-metal batteries (LMBs) that can achieve higher energy density. In addition, the limited availability of lithium reserves raises supply concerns; therefore, research on postlithium metal batteries is underway. A major issue with these metal anodes, including lithium, is dendritic formation and insufficient reversibility, which leads to safety risks due to short circuits and the use of flammable electrolytes.
View Article and Find Full Text PDFParasit Vectors
January 2025
Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia.
Background: Nippostrongylus brasiliensis-a nematode of rodents-is commonly used as a model to study the immunobiology of parasitic nematodes. It is a member of the Strongylida-a large order of socioeconomically important parasitic nematodes of animals. Lipids are known to play essential roles in nematode biology, influencing cellular membranes, energy storage and/or signalling.
View Article and Find Full Text PDFNat Commun
January 2025
School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, PR China.
Developing efficient strategies for the deoxygenative functionalization of carbonyl compounds is crucial for enhancing the effective utilization of biomass and the upgrading of chemical feedstocks. In this study, we present an elegant cathodic reduction strategy that enables a tandem alkylation/dearomatization reaction between quinoline derivatives and aryl aldehydes/ketones in a one-pot process. Our approach can be executed via two distinct paths: the aluminum (Al)-facilitated spin-center shift (SCS) path and the Al-facilitated direct deoxygenation path.
View Article and Find Full Text PDFJ Prev Alzheimers Dis
February 2025
Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA; The Framingham Study, Framingham, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
Background: Ultra-processed food consumption is emerging as a risk factor for various cardiometabolic diseases, however its association with dementia and Alzheimer's disease has rarely been explored.
Objectives: We sought to examine whether ultra-processed food consumption is associated with risk of all-cause dementia and Alzheimer's disease among middle-age and older adults.
Design: A prospective cohort study.
Anal Chim Acta
February 2025
Food Inspection and Quarantine Technology Center of Shenzhen Customs, Shenzhen Academy of Inspection and Quarantine, Shenzhen, 518045, PR China.
Background: Ochratoxin A (OTA) is toxic secondary metabolites produced by fungi and can pose a serious threat to food safety and human health. Due to the high stability and toxicity, OTA contamination in agricultural products is of great concern. Therefore, the development of a highly sensitive and reliable OTA detection method is crucial to ensure food safety.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!