Postsynaptic Receptors for Amyloid-β Oligomers as Mediators of Neuronal Damage in Alzheimer's Disease.

Front Physiol

Centro de Envejecimiento y Regeneración, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile.

Published: December 2012

The neurotoxic effect of amyloid-β peptide (Aβ) over the central synapses has been described and is reflected in the decrease of some postsynaptic excitatory proteins, the alteration in the number and morphology of the dendritic spines, and a decrease in long-term potentiation. Many studies has been carried out to identify the putative Aβ receptors in neurons, and is still no clear why the Aβ oligomers only affect the excitatory synapses. Aβ oligomers bind to neurite and preferentially to the postsynaptic region, where the postsynaptic protein-95 (PSD-95) is present in the glutamatergic synapse, and interacts directly with the N-methyl-D-aspartate receptor (NMDAR) and neuroligin (NL). NL is a postsynaptic protein which binds to the presynaptic protein, neurexin to form a heterophilic adhesion complex, the disruption of this interaction affects the integrity of the synaptic contact. Structurally, NL has an extracellular domain homolog to acetylcholinesterase, the first synaptic protein that was found to interact with Aβ. In the present review we will document the interaction between Aβ and the extracellular domain of NL-1 at the excitatory synapse, as well as the interaction with other postsynaptic components, including the glutamatergic receptors (NMDA and mGluR5), the prion protein, the neurotrophin receptor, and the α7-nicotinic acetylcholine receptor. We conclude that several Aβ oligomers receptors exist at the excitatory synapse, which could be the responsible for the neurotoxic effect described for the Aβ oligomers. The characterization of the interaction between Aβ receptors and Aβ oligomers could help to understand the source of the neurologic damage observed in the brain of the Alzheimer's disease patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3526732PMC
http://dx.doi.org/10.3389/fphys.2012.00464DOI Listing

Publication Analysis

Top Keywords

aβ oligomers
20
10
alzheimer's disease
8
aβ receptors
8
extracellular domain
8
interaction aβ
8
excitatory synapse
8
postsynaptic
6
oligomers
6
postsynaptic receptors
4

Similar Publications

ClpB cooperates with the DnaK chaperone system in the reactivation of protein from aggregates and is a member of the ATPases associated with a variety of cellular activities (AAA+) protein family. The underlying disaggregation reaction is dependent on ATP hydrolysis at both AAA cassettes of ClpB but the role of each AAA cassette in the reaction cycle is largely unknown. Here we analyze the activity of the separately expressed and purified nucleotide binding domains of ClpB from Thermus thermophilus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!