The interaction between ovalbumin (OVA) and three purine alkaloids (caffeine, theophylline and diprophylline) was investigated by the aid of intrinsic and synchronous fluorescence, ultraviolet-vis absorbance, resonance light-scattering spectra and three-dimensional fluorescence spectra techniques. Results showed that the formation of complexes gave rise to the fluorescence quenching of OVA by caffeine, theophylline, and diprophylline. Static quenching was confirmed to results in the fluorescence quenching. The binding site number n, apparent binding constant KA and corresponding thermodynamic parameters were measured at different temperatures. The binding process was spontaneous molecular interaction procedures in which both enthalpy and Gibbs free energy decreased. Van der Waals forces and hydrogen bond played a major role in stabilizing the complex. The comparison between caffeine, theophylline, and diprophylline was made, and thermodynamic results showed that diprophylline was the strongest quencher and bound to OVA with the highest affinity among three compounds. The influence of molecular structure on the binding aspects was reported.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-012-2418-xDOI Listing

Publication Analysis

Top Keywords

caffeine theophylline
12
theophylline diprophylline
12
fluorescence quenching
8
comparative study
4
study interactions
4
interactions ovalbumin
4
ovalbumin three
4
three alkaloids
4
alkaloids spectrofluorimetry
4
spectrofluorimetry interaction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!