β1 and β2 adrenergic receptors (βARs) are highly homologous but fulfill distinct physiological and pathophysiological roles. Here we show that both βAR subtypes activate the cAMP-binding protein Epac1, but they differentially affect its signaling. The distinct effects of βARs on Epac1 downstream effectors, the small G proteins Rap1 and H-Ras, involve different modes of interaction of Epac1 with the scaffolding protein β-arrestin2 and the cAMP-specific phosphodiesterase (PDE) variant PDE4D5. We found that β-arrestin2 acts as a scaffold for Epac1 and is necessary for Epac1 coupling to H-Ras. Accordingly, knockdown of β-arrestin2 prevented Epac1-induced histone deacetylase 4 (HDAC4) nuclear export and cardiac myocyte hypertrophy upon β1AR activation. Moreover, Epac1 competed with PDE4D5 for interaction with β-arrestin2 following β2AR activation. Dissociation of the PDE4D5-β-arrestin2 complex allowed the recruitment of Epac1 to β2AR and induced a switch from β2AR non-hypertrophic signaling to a β1AR-like pro-hypertrophic signaling cascade. These findings have implications for understanding the molecular basis of cardiac myocyte remodeling and other cellular processes in which βAR subtypes exert opposing effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cellsig.2012.12.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!