New insights into DNA-binding by type IIA topoisomerases.

Curr Opin Struct Biol

Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.

Published: February 2013

Type IIA topoisomerases catalyze the passage of two DNA duplexes across each other to resolve the entanglements and coiling of cellular DNA. The ability of these enzymes to interact simultaneously but differentially with two DNA segments is central to their DNA-manipulating functions: one duplex DNA is bound and cleaved to produce a transient double-strand break through which another DNA segment can be transported. Recent structural analyses have revealed in atomic detail how type IIA enzymes contact DNA and how the enzyme-DNA interactions may be exploited by drugs to achieve therapeutic purposes. This review summarizes these new findings, with a special focus on the assembly and structural features of the enzymes' composite DNA-binding surfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.sbi.2012.11.011DOI Listing

Publication Analysis

Top Keywords

type iia
12
iia topoisomerases
8
dna
6
insights dna-binding
4
dna-binding type
4
topoisomerases type
4
topoisomerases catalyze
4
catalyze passage
4
passage dna
4
dna duplexes
4

Similar Publications

TRAF2 and RIPK1 redundantly mediate classical NFκB signaling by TNFR1 and CD95-type death receptors.

Cell Death Dis

January 2025

Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Auvera Haus Grombühlstraße 12, 97080, Würzburg, Germany.

This study suggests a modified model of TNFR1-induced complex I-mediated NFκB signaling. Evaluation of a panel of five tumor cell lines (HCT116-PIK3CAmut, SK-MEL-23, HeLa-RIPK3, HT29, D10) with TRAF2 knockout revealed in two cell lines (HT29, HeLa-RIPK3) a sensitizing effect for death receptor-induced necroptosis and in one cell line (D10) a mild sensitization for TNFR1-induced apoptosis. TRAF2 deficiency inhibited death receptor-induced classical NFκB-mediated production of IL-8 only in a subset of cell lines and only partly.

View Article and Find Full Text PDF

Background: In response to exercise-based pulmonary rehabilitation (PR), the type of muscle fibre remodelling differs between COPD patients with peripheral muscle wasting (atrophic patients with COPD) and those without wasting (nonatrophic patients with COPD). Extracellular matrix (ECM) proteins are major constituents of the cell micro-environment steering cell behaviour and regeneration. We investigated whether the composition of ECM in atrophic compared to nonatrophic patients with COPD differs in response to PR.

View Article and Find Full Text PDF

Muscle fiber types switched during the development of experimental autoimmune myasthenia gravis via the PI3K/Akt signaling pathway.

Mol Immunol

January 2025

Department of Neurobiology, Harbin Medical University Provincial Key Lab of Neurobiology, School of Basic Medical Science, Harbin Medical University, Heilongjiang, China. Electronic address:

As one of the largest organs of our human body, skeletal muscle has good research prospects in myasthenia gravis (MG), the symptoms of which include systemic skeletal muscle weakness. Skeletal muscle is composed of two types of muscle fibers. Different fiber subtypes can be converted into each other; however, the underlying mechanism is not yet clear.

View Article and Find Full Text PDF

Objective: The incidence of anterior cruciate ligament (ACL) ruptures has been increasing annually. However, clinical surgeons have overlooked the impaction fractures of the posterolateral tibial plateau and lateral femoral condyle in patients with ACL ruptures. The purpose of the present study was to report the detection rate of the posterolateral tibial plateau impaction fractures in patients with ACL ruptures, and to evaluate the functional outcomes of patients following ACL reconstruction (ACLR) without treatment of the tibial fractures at a 2-year postoperative follow-up.

View Article and Find Full Text PDF

Sotatercept in pulmonary hypertension and beyond.

Eur J Clin Invest

January 2025

Department of Surgical, Medical and Molecular Pathology and Critical Area, Laboratory of Biochemistry, University of Pisa, Pisa, Italy.

Sotatercept binds free activins by mimicking the extracellular domain of the activin receptor type IIA (ACTRIIA). Additional ligands are BMP/TGF-beta, GDF8, GDF11 and BMP10. The binding with activins leads to the inhibition of the signalling pathway and the deactivation of the bone morphogenic protein (BMP) receptor type 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!